Spatial Analysis, Policy, Planning, and~Alternative Energy Production

Author(s):  
James Pace ◽  
Jay D. Gatrell
Author(s):  
Kau-Fui Vincent Wong ◽  
Guillermo Amador

As society continues advancing into the future, more energy is required to supply the increasing population and energy demands. Unfortunately, traditional forms of energy production through the burning of carbon-based fuels are dumping harmful pollutants into the environment, resulting in detrimental, and possibly irreversible, effects on our planet. The burning of coal and fossil fuels provides energy at the least monetary cost for countries like the US, but the price being paid through their negative impact of our atmosphere is difficult to quantify. A rapid shift to clean, alternative energy sources is critical in order to reduce the amount of greenhouse gas emissions. For alternative energy sources to replace traditional energy sources that produce greenhouse gases, they must be capable of providing energy at equal or greater rates and efficiencies, while still functioning at competitive prices. The main factors hindering the pursuit of alternative sources are their high initial costs and, for some, intermittency. The creation of electrical energy from natural sources like wind, water, and solar is very desirable since it produces no greenhouse gases and makes use of renewable sources—unlike fossil fuels. However, the planning and technology required to tap into these sources and transfer energy at the rate and consistency needed to supply our society comes at a higher price than traditional methods. These high costs are a result of the large-scale implementation of the state-of-the-art technologies behind the devices required for energy cultivation and delivery from these unorthodox sources. On the other hand, as fossil fuel sources become scarcer, the rising fuel costs drive overall costs up and make traditional methods less cost effective. The growing scarcity of fossil fuels and resulting pollutants stimulate the necessity to transition away from traditional energy production methods. Currently, the most common alternative energy technologies are solar photovoltaics (PVs), concentrated solar power (CSP), wind, hydroelectric, geothermal, tidal, wave, and nuclear. Because of government intervention in countries like the US and the absence of the need to restructure the electricity transmission system (due to the similarity in geographical requirements and consistency in power outputs for nuclear and traditional plants), nuclear energy is the most cost competitive energy technology that does not produce greenhouse gases. Through the proper use of nuclear fission electricity at high efficiencies could be produced without polluting our atmosphere. However, the initial capital required to erect nuclear plants dictates a higher cost over traditional methods. Therefore, the government is providing help with the high initial costs through loan guarantees, in order to stimulate the growth of low-emission energy production. This paper analyzes the proposal for the use of nuclear power as an intermediate step before an eventual transition to greater dependence on energy from wind, water, and solar (WWS) sources. Complete dependence on WWS cannot be achieved in the near future, within 20 years, because of the unavoidable variability of these sources and the required overhaul of the electricity transmission system. Therefore, we look to nuclear power in the time being to help provide predictable power as a means to reduce carbon emissions, while the other technologies are refined and gradually implemented in order to meet energy demand on a consistent basis.


2015 ◽  
Vol 6 (1) ◽  
pp. 11-17 ◽  
Author(s):  
G. Szabó ◽  
P. Enyedi ◽  
Gy. Szabó ◽  
I. Fazekas ◽  
T. Buday ◽  
...  

According to the challenge of the reduction of greenhouse gases, the structure of energy production should be revised and the increase of the ratio of alternative energy sources can be a possible solution. Redistribution of the energy production to the private houses is an alternative of large power stations at least in a partial manner. Especially, the utilization of solar energy represents a real possibility to exploit the natural resources in a sustainable way. In this study we attempted to survey the roofs of the buildings with an automatic method as the potential surfaces of placing solar panels. A LiDAR survey was carried out with 12 points/m2 density as the most up-to-date method of surveys and automatic data collection techniques. Our primary goal was to extract the buildings with special regard to the roofs in a 1 km2 study area, in Debrecen. The 3D point cloud generated by the LiDAR was processed with MicroStation TerraScan software, using semi-automatic algorithms. Slopes, aspects and annual solar radiation income of roof planes were determined in ArcGIS10 environment from the digital surface model. Results showed that, generally, the outcome can be regarded as a roof cadaster of the buildings with correct geometry. Calculated solar radiation values revealed those roof planes where the investment for photovoltaic solar panels can be feasible.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Arnold Y Seo ◽  
Pick-Wei Lau ◽  
Daniel Feliciano ◽  
Prabuddha Sengupta ◽  
Mark A Le Gros ◽  
...  

Dietary restriction increases the longevity of many organisms, but the cell signaling and organellar mechanisms underlying this capability are unclear. We demonstrate that to permit long-term survival in response to sudden glucose depletion, yeast cells activate lipid-droplet (LD) consumption through micro-lipophagy (µ-lipophagy), in which fat is metabolized as an alternative energy source. AMP-activated protein kinase (AMPK) activation triggered this pathway, which required Atg14p. More gradual glucose starvation, amino acid deprivation or rapamycin did not trigger µ-lipophagy and failed to provide the needed substitute energy source for long-term survival. During acute glucose restriction, activated AMPK was stabilized from degradation and interacted with Atg14p. This prompted Atg14p redistribution from ER exit sites onto liquid-ordered vacuole membrane domains, initiating µ-lipophagy. Our findings that activated AMPK and Atg14p are required to orchestrate µ-lipophagy for energy production in starved cells is relevant for studies on aging and evolutionary survival strategies of different organisms.


2018 ◽  
Vol 77 (12) ◽  
pp. 2851-2857 ◽  
Author(s):  
En-Chin Su ◽  
Ju-Ting Lee ◽  
Yi-Jean Gong ◽  
Bing-Shun Huang ◽  
Ming-Yen Wey

Abstract A sustainable and multifunctional photocatalysis-based technology has been established herein for simultaneous hydrogen generation and oxidation of ethylenediaminetetraacetic acid (EDTA) in real electroplating wastewater. When the photocatalyst concentration was 4 g/L and electroplating wastewater pH was 6, optimal adsorptions of EDTA2−, H+, and H2O were observed, while hydrogen generation efficiency reached 305 µmol/(h g). Owing to EDTA oxidation and occupation of the active sites of the photocatalyst by Ni ions or Ni-EDTA chelates, the charge separation and adsorptions of H+ and H2O decreased, reducing hydrogen generation efficiency with time. The lower EDTA and Ni concentrations in treated wastewater showed that photocatalytic conversion of EDTA in real electroplating wastewater to enhance hydrogen generation efficiency can be a practical alternative energy production technology. This study provided a novel idea to enhance the value of electroplating wastewater, to build a hydrogen generation route with no consumption of a valuable resource, and to reduce EDTA and Ni concentrations in electroplating wastewater.


2013 ◽  
Vol 5 (4) ◽  
pp. 435-441 ◽  
Author(s):  
Giedrius Šiupšinskas ◽  
Solveiga Adomėnaitė

The article analyzes energy supply alternatives for modernised public nearly zero energy buildings. The paper examines alternative energy production systems such as heat pumps (air-water and ground-water), solar collectors, adsorption cooling, biomass boiler, solar photovoltaic, wind turbines and combinations of these systems. The simulation of the analysed building energy demand for different energy production alternatives has been performed using TRNSYS modelling software. In order to determine an optimal energy supply variant, the estimated results of energy, environmental, and economic evaluation have been converted into non-dimensional variables (3E) using multi-criteria analysis. Article in Lithuanian. Santrauka Siekiant beveik nulinio energijos balanso modernizuotame viešosios paskirties pastate, nagrinėjamos aprūpinimo energija alternatyvos. Tiriamos šios alternatyvios aprūpinimo energija sistemos: šilumos siurbliai (gruntas–vanduo ir oras– vanduo), saulės kolektoriai, adsorbcinė vėsinimo mašina, biokuro katilas, saulės elementai, vėjo jėgainė – ir šių sistemų deriniai. Skirtingų aprūpinimo energija variantų energijos poreikiai modeliuojami TRNSYS (The Transient System Simulation Program) modeliavimo programa. Siekiant nustatyti optimalų aprūpinimo energija variantą, gauti energinio, ekologinio ir ekonominio vertinimų rezultatai daugiakriterės analizės būdu perskaičiuojami į nedimensinius rodiklius (3E).


1976 ◽  
Vol 8 (4) ◽  
pp. 447-454 ◽  
Author(s):  
F Giarratani

An interindustry model relating gross output to the availability of primary inputs is used to examine supply linkages associated with national energy production. The results of calculations for US data highlight the importance of extractive energy sectors in intermediate production, and identify supplying sectors that have the potential of restricting energy output. The use of this model as a means to simulate the impact of alternative energy-allocation programmes on gross output is discussed and the results of one simulation are presented.


MESIN ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jamal M Afiff ◽  
Gusti Firdaus Alamhudi

<p><em>Solar panel is gaining popularity as one of the source of alternative energy especially in tropical country. Solar panel users need to know how much energy is produced and what components it takes before starting to make a solar panel system. A comparison between ideal energy and actual energy will help to evaluate the performance of solar panel to show how much energy it will produce under a real condition. In this research, a 20 WP solar panel was used and the data collection was performed from 9 May 2018–9 July 2018 in Bekasi City. Collected data are voltage and current produced by the solar panel every ten minutes for ten hours continuous measurements. The solar panel performance was analysed by comparing maximum power, average power, and energy production per week. From the data measurements and analysis, it is found that the total energy produced is 3797 Wh, the average energy produced in one day is 61.24 Wh, and the average peak hour is 11.20 a.m.</em><em></em></p>


Author(s):  
A. Yevdokymova ◽  
A. Dehtiarenko ◽  
N. Petrenko

The paper analyzes the peculiarities of the development of the energy sector in Ukraine, as well as in European countries. Existing approaches to energy production are shown. The situation in Ukraine has changed in recent years. Energy production has shifted from centralized to distributed. The emergence of new types of power plants has made it possible to connect to the grid in places where it was previously impossible, a large number of consumers already have their own power units. Therefore, managing the energy network is becoming increasingly complex and therefore requires new approaches. The normative and legislative beginning of the active development of alternative energy in Ukraine already exists, and European and world experience should help Ukraine achieve energy independence and high environmental standards. Existing problems in the development of power grids arise due to the intensive growth of production and consumption of electricity, while the management of power systems is complicated by the growing share of distributed and renewable energy sources with changing production schedule. Improved controllability of electrical networks allows to prevent emergencies by load control programs, division of the network into autonomous zones, etc. Investment is a crucial factor in creating a flexible and efficient power grid based on innovative technical solutions. Implementation of energy efficiency projects is a guideline for improving the intelligent level of the energy system, which will allow energy companies to manage the energy network as a single system, increase profitability, reliability and uninterrupted, reduce technical and commercial losses, improve network management and efficiency. An important role is played by the interaction of all stakeholders in projects - the state, production, energy and energy sales companies, consumers and equipment manufacturers. Thus, the international experience in the transmission and distribution of electricity creates opportunities for successfully implementing projects for the introduction of energy-efficient technologies in our Ukraine.


Sign in / Sign up

Export Citation Format

Share Document