Dynamical Properties of Intensity Fluctuation of Saturation Laser Model Driven by Cross-Correlated Additive and Multiplicative Noises

2010 ◽  
pp. 233-249
Author(s):  
Ping Zhu
2010 ◽  
Vol 24 (14) ◽  
pp. 2175-2188 ◽  
Author(s):  
PING ZHU ◽  
YI JIE ZHU

Statistical properties of the intensity fluctuation of a saturation laser model driven by cross-correlation additive and multiplicative noises are investigated. Using the Novikov theorem and the projection operator method, we obtain the analytic expressions of the stationary probability distribution Pst(I), the relaxation time Tc, and the normalized variance λ2(0) of the system. By numerical computation, we discussed the effects of the cross-correlation strength λ, the cross-correlation time τ, the quantum noise intensity D, and the pump noise intensity Q for the fluctuation of the laser intensity. Above the threshold, λ weakens the stationary probability distribution, speeds up the startup velocity of the laser system from start status to steady work, and attenuates the stability of laser intensity output; however, τ strengthens the stationary probability distribution and strengths the stability of laser intensity output; when λ < 0, τ speeds up the startup; on the contrast, when λ > 0, τ slows down the startup. D and Q make the relaxation time exhibit extremum structure, that is, the startup time possesses the least values. At the threshold, τ cannot generate the effects for the saturation laser system, λ expedites the startup velocity and weakens the stability of laser intensity output. Below threshold, the effects of λ and τ not only relate to λ and τ, but also relate to other parameters of the system.


2006 ◽  
Vol 20 (23) ◽  
pp. 1481-1488 ◽  
Author(s):  
P. ZHU ◽  
S. B. CHEN ◽  
D. C. MEI

The effects of correlations between additive and multiplicative noises in a saturation laser model are investigated. The approximative Fokker–Planck equation and analytic expressions of the steady-state probability distribution function (SPD) of the laser system are derived. Based on the SPD, the normalized mean, the normalized variance, and the normalized skewness of the steady-state laser intensity are calculated numerically. Our results indicate that: (i) For the laser being operated above threshold, the correlation strength λ reduces the intensity fluctuation; (ii) For the laser being operated near threshold and below threshold, the correlation strength λ enhances the intensity fluctuation.


2015 ◽  
Vol 24 (12) ◽  
pp. 124203
Author(s):  
Shao-Hui Zhang ◽  
Shu-Lian Zhang ◽  
Yi-Dong Tan ◽  
Li-Qun Sun

1999 ◽  
Vol 173 ◽  
pp. 327-338 ◽  
Author(s):  
J.A. Fernández ◽  
T. Gallardo

AbstractThe Oort cloud probably is the source of Halley-type (HT) comets and perhaps of some Jupiter-family (JF) comets. The process of capture of Oort cloud comets into HT comets by planetary perturbations and its efficiency are very important problems in comet ary dynamics. A small fraction of comets coming from the Oort cloud − of about 10−2− are found to become HT comets (orbital periods &lt; 200 yr). The steady-state population of HT comets is a complex function of the influx rate of new comets, the probability of capture and their physical lifetimes. From the discovery rate of active HT comets, their total population can be estimated to be of a few hundreds for perihelion distancesq &lt;2 AU. Randomly-oriented LP comets captured into short-period orbits (orbital periods &lt; 20 yr) show dynamical properties that do not match the observed properties of JF comets, in particular the distribution of their orbital inclinations, so Oort cloud comets can be ruled out as a suitable source for most JF comets. The scope of this presentation is to review the capture process of new comets into HT and short-period orbits, including the possibility that some of them may become sungrazers during their dynamical evolution.


Sign in / Sign up

Export Citation Format

Share Document