Emergency Evacuation Modeling: A Novel Approach to Layout Designs and Evacuation Procedures

Author(s):  
R. A. Kady ◽  
A. Tolk
Safety ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Wattana Chanthakhot ◽  
Kasin Ransikarbum

Emergency events in the industrial sector have been increasingly reported during the past decade. However, studies that focus on emergency evacuation to improve industrial safety are still scarce. Existing evacuation-related studies also lack a perspective of fire assembly point’s analysis. In this research, location of assembly points is analyzed using the multi-criteria decision analysis (MCDA) technique based on the integrated information entropy weight (IEW) and techniques for order preference by similarity to ideal solution (TOPSIS) to support the fire evacuation plan. Next, we propose a novel simulation model that integrates fire dynamics simulation coupled with agent-based evacuation simulation to evaluate the impact of smoke and visibility from fire on evacuee behavior. Factors related to agent and building characteristics are examined for fire perception of evacuees, evacuees with physical disabilities, escape door width, fire location, and occupancy density. Then, the proposed model is applied to a case study of a home appliance factory in Chachoengsao, Thailand. Finally, results for the total evacuation time and the number of remaining occupants are statistically examined to suggest proper evacuation planning.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 581 ◽  
Author(s):  
Weilong Yang ◽  
Yue Hu ◽  
Cong Hu ◽  
Mei Yang

With the gradual expansion of high buildings and underground spaces, deep foundation pits have been widely used in these engineering projects, but if they are not well-designed, safety problems occur. Proper deep foundation pit design requires proper exit distribution. However, calculating an adequate number of exit distributions for evaluation is difficult due to the numerous influential factors existing in the deep foundation pit environment. To this end, this paper presents a prototype of a decision-making system that uses agent-based modeling to simulate deep foundation pit evacuation in the presence of collapse disaster. By modeling the collapse occurrence process and agent escape process, an agent-based evacuation model is built, and a modified simulation-based particle swarm optimization algorithm is used to solve the optimization problem of exit distribution. Extensive experiments are conducted to verify the system, and the results show that the system provides a feasible framework for deep foundation pit evacuation.


Author(s):  
Pamela M. Murray-Tuite ◽  
Hani S. Mahmassani

An evacuation modeling framework that bridges the gap between observed household behavior and traditional evacuation models is presented. Numerous observers have noted that household members seek each other and then evacuate as a single unit. The desire to find relatives before leaving an area may result in people moving toward the danger instead of away from it. This pattern has not been captured by traditional evacuation models, which assume that people immediately move away from the danger. The gap between observed behavior and theoretical models leads to longer-than-expected evacuation times. A series of two linear integer programs provide an expression for the household behavior in evacuation conditions. The first formulation determines the meeting location for the household members. The second formulation determines which drivers pick up each of the family members and the sequence of the collection. Tying these linear programs to traffic simulation software allows for a more complete evacuation simulation. Furthermore, information supply strategies may be incorporated into the simulation. The effect of information on reassignment and resequencing may also be examined.


2017 ◽  
Vol 30 (1) ◽  
pp. 32-36 ◽  
Author(s):  
Easir A Khan ◽  
Mohammad Abir Ahmed ◽  
Emamul Haque Khan ◽  
Suvash C Majumder

Fire accident in a shopping mall, garments factory and other labor intensive industries nowadays has become a common incident in Bangladesh and poses a great threat to life, facilities and economy of our country. In this work, fire and evacuation simulation was performed for a single stored shopping complex utilizing computational fluid dynamic techniques. Fire Dynamic Simulator with evacuation (FDS+Evac) software was used to simulate a shopping mall fire and study the effects of fire on the emergency egress process of people. The shopping mall of area 64 m2 comprises of seven rooms with a pool fire at the center of the mall is modeled for simulation. The total evacuation time (TET) for a fixed population density were estimated with the change of heat release rate, soot yield, soot density and the design pattern or geometry of shopping mall. The evacuation of agents in different time and different design pattern of the mall has been assessed using the data obtained from the simulation. FDS+Evac provides an integrating platform where the interaction between fire growth and evacuees can be taken into account by simultaneous simulation allowing a full coupling of the fire conditions and human behavior. This makes FDS is an effective tool for simulating large and high density crowds where the movement dynamics of evacuees is affected by the crowd pressure. Full scale fire experiment is often quite difficult to study the fine and crowds evacuation behavior. This paper illustrates a promising application of fire dynamic simulator (FDS+Evac) for fire and evacuation modeling to predict the total evacuation time.Journal of Chemical Engineering, Vol. 30, No. 1, 2017: 32-36


2016 ◽  
Vol 25 (11) ◽  
pp. 118901 ◽  
Author(s):  
Lei Wang ◽  
Jie-Hui Zheng ◽  
Xiao-Shuang Zhang ◽  
Jian-Lin Zhang ◽  
Qiu-Zhen Wang ◽  
...  

2020 ◽  
Vol 9 (4) ◽  
pp. 215
Author(s):  
Will Y. Lin

The indoor space model is the foundation of most indoor location-based services (LBS). A complete indoor space model includes floor-level paths and non-level paths. The latter includes passages connecting different floors or elevations such as stairs, elevators, escalators, and ramps. Most related studies have merely discussed the modeling and generation of floor-level paths, while those considering non-level paths usually simplify the formation and generation of non-level paths, especially stairs, which play an important role in emergency evacuation and response. Although the algorithm proposed by i-GIT approach, which considers both floor-level and non-level paths, can automatically generate paths of straight stairs, it is not applicable to the spiral stairs and winder stairs that are common in town houses and other public buildings. This study proposes a novel approach to generate high-accuracy stair paths that can support straight, spiral, and winder stairs. To implement and verify the proposed algorithm, 54 straight and spiral stairs provided by Autodesk Revit’s official website and three self-built winder stairs are used as test cases. The test results show that the algorithm can successfully produce the stair paths of most test cases (49/50), which comprehensively extends the applicability of the proposed algorithm.


Author(s):  
Liang Ma ◽  
Bin Chen ◽  
Sihang Qiu ◽  
Zhen Li ◽  
Xiaogang Qiu

Evacuation modeling is a promising measure to support decision making in scenarios such as flooding, explosion, terrorist attack and other emergency incidents. Given the special attention to the terrorist attack, we build up an agent-based evacuation model in a railway station square under sarin terrorist attack to analyze such incident. Sarin dispersion process is described by Gaussian puff model. Due to sarin’s special properties of being colorless and odorless, we focus more on the modeling of agents’ perceiving and reasoning process and use a Belief, Desire, Intention (BDI) architecture to solve the problem. Another contribution of our work is that we put forward a path planning algorithm which not only take distance but also comfort and threat factors into consideration. A series of simulation experiments demonstrate the ability of the proposed model and examine some crucial factors in sarin terrorist attack evacuation. Though far from perfect, the proposed model could serve to support decision making.


Sign in / Sign up

Export Citation Format

Share Document