The Physics of Aerosol Droplet and Particle Generation from Inhalers

Author(s):  
Zhen Xu ◽  
Anthony J. Hickey
Author(s):  
Marylyn Bennett-Lilley ◽  
Thomas T.H. Fu ◽  
David D. Yin ◽  
R. Allen Bowling

Chemical Vapor Deposition (CVD) tungsten metallization is used to increase VLSI device performance due to its low resistivity, and improved reliability over other metallization schemes. Because of its conformal nature as a blanket film, CVD-W has been adapted to multiple levels of metal which increases circuit density. It has been used to fabricate 16 MBIT DRAM technology in a manufacturing environment, and is the metallization for 64 MBIT DRAM technology currently under development. In this work, we investigate some sources of contamination. One possible source of contamination is impurities in the feed tungsten hexafluoride (WF6) gas. Another is particle generation from the various reactor components. Another generation source is homogeneous particle generation of particles from the WF6 gas itself. The purpose of this work is to investigate and analyze CVD-W process-generated particles, and establish a particle characterization methodology.


1999 ◽  
Vol 169 (1) ◽  
pp. 72 ◽  
Author(s):  
Aleksandr A. Andreev ◽  
V.E. Yashin ◽  
Aleksandr V. Charukhchev

2006 ◽  
Vol 519-521 ◽  
pp. 795-802 ◽  
Author(s):  
Dominique Daniel ◽  
Gilles Guiglionda ◽  
Pierre Litalien ◽  
Ravi Shahani

Cost-efficient designs of aluminum autobody structures consist mainly of stampings using conventional technology. Progress in metallurgy and forming processes has enabled aluminum body panels to achieve significant market share, particularly for hoods. Fast bake hardening alloys with better hemming performance were developed for improved outer panel sheet products. Specific guidelines for handling and press working were established to form aluminum panels using similar schedules and production lines as steel parts. Stamping productivity was improved by optimization of the trimming process to reduce sliver/particle generation and resulting end-of-line manual rework. Both hemming formability and trimming quality not only depend on tooling setup but also on microstructural features, which govern intrinsic alloy ductility. Targets for the next high volume aluminum car body applications, such as roof panels and doors, require higher strength and/or better formability. The challenges of complex stampings can be met with optimized alloys and lubricants, with improved numerical simulation to fine-tune stamping process parameters, and with the introduction of new technologies. Warm forming was examined as a potential breakthrough technology for high volume stamping of complex geometries.


2001 ◽  
Vol 32 ◽  
pp. 1065-1066
Author(s):  
M. Gangl ◽  
H. Horvath ◽  
K. Noda

2020 ◽  
Vol 10 (16) ◽  
pp. 5508
Author(s):  
F. Ruiz-Jorge ◽  
J. R. Portela ◽  
J. Sánchez-Oneto ◽  
E. J. Martínez de la Ossa

The use of micro- and nanoparticles is gaining more and more importance because of their wide range of uses and benefits based on their unique mechanical, physical, electrical, optical, electronic, and magnetic properties. In recent decades, supercritical fluid technologies have strongly emerged as an effective alternative to other numerous particle generation processes, mainly thanks to the peculiar properties exhibited by supercritical fluids. Carbon dioxide and water have so far been two of the most commonly used fluids for particle generation, the former being the fluid par excellence in this field, mainly, because it offers the possibility of precipitating thermolabile particles. Nevertheless, the use of high-pressure and -temperature water opens an innovative and very interesting field of study, especially with regards to the precipitation of particles that could hardly be precipitated when CO2 is used, such as metal particles with a considerable value in the market. This review describes an innovative method to obtain micro- and nanoparticles: hydrothermal synthesis by means of near and supercritical water. It also describes the differences between this method and other conventional procedures, the most currently active research centers, the types of particles synthesized, the techniques to evaluate the products obtained, the main operating parameters, the types of reactors, and amongst them, the most significant and the most frequently used, the scaling-up studies under progress, and the milestones to be reached in the coming years.


2016 ◽  
Vol 110 ◽  
pp. 01001
Author(s):  
D.V. Antonov ◽  
I.S. Voitkov ◽  
P.A. Strizhak
Keyword(s):  

Author(s):  
K.A. Gross ◽  
P. Fauchais ◽  
M. Vardelle ◽  
J. Tikkanen ◽  
J. Keskinen

Abstract The thermal spray process melts powder at very high temperatures and propels the molten material to the substrate to produce a coherent deposit. This heating produces a certain amount of vaporization of the feedstock. Upon exiting the plasma plume the fast cooling conditions lead to condensation of the vapor. An electrical low pressure impactor was used to monitor the concentration of ultra-fine particles at various radial and axial distances. Metal, namely iron powder, showed very high concentration levels which increase with distance. Ultra-fine particles from ZrO2-8Y2O3 reached a peak concentration at 6 cm. Use of an air barrier during spraying decreases the population of ultra-fine particles facilitating the production of a stronger coating.


Sign in / Sign up

Export Citation Format

Share Document