Correlated Neuronal Activity and Behavior

ICANN ’93 ◽  
1993 ◽  
pp. 125-130
Author(s):  
Olaf Sporns ◽  
Giulio Tononi ◽  
Gerald M. Edelman
2021 ◽  
Vol 15 ◽  
Author(s):  
Hamed Zaer ◽  
Ashlesha Deshmukh ◽  
Dariusz Orlowski ◽  
Wei Fan ◽  
Pierre-Hugues Prouvot ◽  
...  

Recording and manipulating neuronal ensemble activity is a key requirement in advanced neuromodulatory and behavior studies. Devices capable of both recording and manipulating neuronal activity brain-computer interfaces (BCIs) should ideally operate un-tethered and allow chronic longitudinal manipulations in the freely moving animal. In this study, we designed a new intracortical BCI feasible of telemetric recording and stimulating local gray and white matter of visual neural circuit after irradiation exposure. To increase the translational reliance, we put forward a Göttingen minipig model. The animal was stereotactically irradiated at the level of the visual cortex upon defining the target by a fused cerebral MRI and CT scan. A fully implantable neural telemetry system consisting of a 64 channel intracortical multielectrode array, a telemetry capsule, and an inductive rechargeable battery was then implanted into the visual cortex to record and manipulate local field potentials, and multi-unit activity. We achieved a 3-month stability of the functionality of the un-tethered BCI in terms of telemetric radio-communication, inductive battery charging, and device biocompatibility for 3 months. Finally, we could reliably record the local signature of sub- and suprathreshold neuronal activity in the visual cortex with high bandwidth without complications. The ability to wireless induction charging combined with the entirely implantable design, the rather high recording bandwidth, and the ability to record and stimulate simultaneously put forward a wireless BCI capable of long-term un-tethered real-time communication for causal preclinical circuit-based closed-loop interventions.


Author(s):  
Randy F. Stout Jr. ◽  
Alexei Verkhratsky ◽  
Vladimir Parpura

2021 ◽  
Vol 44 (1) ◽  
Author(s):  
Paulo Kofuji ◽  
Alfonso Araque

Animal behavior was classically considered to be determined exclusively by neuronal activity, whereas surrounding glial cells such as astrocytes played only supportive roles. However, astrocytes are as numerous as neurons in the mammalian brain, and current findings indicate a chemically based dialog between astrocytes and neurons. Activation of astrocytes by synaptically released neurotransmitters converges on regulating intracellular Ca2+ in astrocytes, which then can regulate the efficacy of near and distant tripartite synapses at diverse timescales through gliotransmitter release. Here, we discuss recent evidence on how diverse behaviors are impacted by this dialog. These recent findings support a paradigm shift in neuroscience, in which animal behavior does not result exclusively from neuronal activity but from the coordinated activity of both astrocytes and neurons. Decoding how astrocytes and neurons interact with each other in various brain circuits will be fundamental to fully understanding how behaviors originate and become dysregulated in disease. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 22 (5) ◽  
pp. 2288
Author(s):  
Menekse Öztürk ◽  
Marc Ingenwerth ◽  
Martin Sager ◽  
Charlotte von Gall ◽  
Amira A. H. Ali

The circadian rhythms of body functions in mammals are controlled by the circadian system. The suprachiasmatic nucleus (SCN) in the hypothalamus orchestrates subordinate oscillators. Time information is conveyed from the retina to the SCN to coordinate an organism’s physiology and behavior with the light/dark cycle. At the cellular level, molecular clockwork composed of interlocked transcriptional/translational feedback loops of clock genes drives rhythmic gene expression. Mice with targeted deletion of the essential clock gene Bmal1 (Bmal1−/−) have an impaired light input pathway into the circadian system and show a loss of circadian rhythms. The red house (RH) is an animal welfare measure widely used for rodents as a hiding place. Red plastic provides light at a low irradiance and long wavelength—conditions which affect the circadian system. It is not known yet whether the RH affects rhythmic behavior in mice with a corrupted circadian system. Here, we analyzed whether the RH affects spontaneous locomotor activity in Bmal1−/− mice under standard laboratory light conditions. In addition, mPER1- and p-ERK-immunoreactions, as markers for rhythmic SCN neuronal activity, and day/night plasma corticosterone levels were evaluated. Our findings indicate that application of the RH to Bmal1−/− abolishes rhythmic locomotor behavior and dampens rhythmic SCN neuronal activity. However, RH had no effect on the day/night difference in corticosterone levels.


Author(s):  
Luis Carrillo-Reid ◽  
Rafael Yuste

Despite over a century of neuroscience research, the nature of the neural code, that is, how neuronal activity underlies motor, sensory, and cognitive functions, remains elusive. Understanding the causal relation between neuronal activity and behavior requires a new conceptual paradigm that considers groups of neurons, instead of individual neurons, as the functional building blocks of the brain. These “neuronal ensembles,” defined as groups of neurons with coordinated activity that are reliably recalled by sensory stimuli, motor programs, or cognitive states, could be basic modular functional units of neural circuits. This hypothesis is consistent with past and present neuroscience results and could provide a broader framework to more effectively decipher the neural code in normal brains and provide new insights into how abnormal brain activity could lead to mental and neurological disease.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Stephanie M. Perez ◽  
Angela Boley ◽  
Daniel J. Lodge

Abstract The anterior hippocampus and prefrontal cortex are regions linked to symptoms of schizophrenia. The anterior hippocampus is believed to be a key regulator of the mesolimbic dopamine system and is thought to be the driving force contributing to positive symptoms, while the prefrontal cortex is involved in cognitive flexibility and negative symptoms. Aberrant activity in these regions is associated with decreases in GABAergic markers, indicative of an interneuron dysfunction. Specifically, selective decreases are observed in interneurons that contain parvalbumin (PV) or somatostatin (SST). Here, we used viral knockdown in rodents to recapitulate this finding and examine the region-specific roles of PV and SST on neuronal activity and behaviors associated with positive, negative and cognitive symptoms. We found that PV and SST had differential effects on neuronal activity and behavior when knocked down in the ventral hippocampus (vHipp) or medial prefrontal cortex (mPFC). Specifically, SST or PV knockdown in the vHipp increased pyramidal cell activity of the region and produced downstream effects on dopamine neuron activity in the ventral tegmental area (VTA). In contrast, mPFC knockdown did not affect the activity of VTA dopamine neuron activity; however, it did produce deficits in negative (social interaction) and cognitive (reversal learning) domains. Taken together, decreases in PV and/or SST were sufficient to produce schizophrenia-like deficits that were dependent on the region targeted.


Sign in / Sign up

Export Citation Format

Share Document