Design of Intelligent Protection and Control Device for Medium and Small-Scale Asynchronous Motor

Author(s):  
Dao-lin Li ◽  
Zhi-qiang Wu ◽  
Xiang-yang Chen ◽  
Jun-gang Li ◽  
Yong Wei
Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1006 ◽  
Author(s):  
Sergio Bruno ◽  
Gabriella Dellino ◽  
Massimo La Scala ◽  
Carlo Meloni

The paper describes the methodology used for developing an electric load microforecasting module to be integrated in the Energy Management System (EMS) architecture designed and tested within the “Energy Router” (ER) project. This Italian R&D project is aimed at providing non-industrial active customers and prosumers with a monitoring and control device that would enable demand response through optimization of their own distributed energy resources (DERs). The optimal control of resources is organized with a hierarchical control structure and performed in two stages. A cloud-based computation platform provides global control functions based on model predictive control whereas a closed-loop local device manages actual monitoring and control of field components. In this architecture, load forecasts on a small scale (a single residential or tertiary building) are needed as inputs of the predictive control problem. The microforecasting module aimed at providing such inputs was designed to be flexible, adaptive, and able to treat data with low time resolution. The module includes alternative forecasting techniques, such as autoregressive integrated moving average (ARIMA), neural networks, and exponential smoothing, allowing the application of the right forecasting strategy each time. The presented test results are based on a dataset acquired during a monitoring campaign in two pilot systems, installed during the ER Project in public buildings.


2013 ◽  
Vol 42 (2) ◽  
pp. 403-418 ◽  
Author(s):  
Eric Belasco ◽  
Suzette Galinato ◽  
Tom Marsh ◽  
Carol Miles ◽  
Russell Wallace

High tunnels are being used by specialty crop producers to enhance production yields and quality, extend growing seasons, and protect crops from extreme weather. The tunnels are unheated, plastic-covered structures under which crops are planted directly in the soil, and they provide greater environmental protection and control than open-field production. This study uses field-level experiments to evaluate high-tunnel production. The results suggest that investments in high tunnels can provide increased profits and superior protection against adverse risks relative to crop insurance.


2007 ◽  
Vol 158 (8) ◽  
pp. 235-242 ◽  
Author(s):  
Hans Rudolf Heinimann

The term «precision forestry» was first introduced and discussed at a conference in 2001. The aims of this paper are to explore the scientific roots of the precision concept, define «precision forestry», and sketch the challenges that the implementation of this new concept may present to practitioners, educators, and researchers. The term «precision» does not mean accuracy on a small scale, but instead refers to the concurrent coordination and control of processes at spatial scales between 1 m and 100 km. Precision strives for an automatic control of processes. Precision land use differs from precision engineering by the requirements of gathering,storing and managing spatio-temporal variability of site and vegetation parameters. Practitioners will be facing the challenge of designing holistic, standardized business processes that are valid for whole networks of firms,and that follow available standards (e.g., SCOR, WoodX). There is a need to educate and train forestry professionals in the areas of business process re-engineering, computer supported management of business transactions,methods of remote sensing, sensor technology and control theory. Researchers will face the challenge of integrating plant physiology, soil physics and production sciences and solving the supply chain coordination problem (SCCP).


Author(s):  
Anthony Ryan Hatch ◽  
Julia T. Gordon ◽  
Sonya R. Sternlieb

The new artificial pancreas system includes a body-attached blood glucose sensor that tracks glucose levels, a worn insulin infusion pump that communicates with the sensor, and features new software that integrates the two systems. The artificial pancreas is purportedly revolutionary because of its closed-loop design, which means that the machine can give insulin without direct patient intervention. It can read a blood sugar and administer insulin based on an algorithm. But, the hardware for the corporate artificial pancreas is expensive and its software code is closed-access. Yet, well-educated, tech-savvy diabetics have been fashioning their own fully automated do-it-yourself (DIY) artificial pancreases for years, relying on small-scale manufacturing, open-source software, and inventive repurposing of corporate hardware. In this chapter, we trace the corporate and DIY artificial pancreases as they grapple with issues of design and accessibility in a content where not everyone can become a diabetic cyborg. The corporate artificial pancreas offers the cyborg low levels of agency and no ownership and control over his or her own data; it also requires access to health insurance in order to procure and use the technology. The DIY artificial pancreas offers patients a more robust of agency but also requires high levels of intellectual capital to hack the devices and make the system work safely. We argue that efforts to increase agency, radically democratize biotechnology, and expand information ownership in the DIY movement are characterized by ideologies and social inequalities that also define corporate pathways.


2012 ◽  
Vol 59 (1) ◽  
Author(s):  
Mohd Helmi Sani ◽  
Frank Baganz

At present, there are a number of commercial small scale shaken systems available on the market with instrumented controllable microbioreactors such as Micro–24 Microreactor System (Pall Corporation, Port Washington, NY) and M2P Biolector, (M2P Labs GmbH, Aachen, Germany). The Micro–24 system is basically an orbital shaken 24–well plate that operates at working volume 3 – 7 mL with 24 independent reactors (deep wells, shaken and sparged) running simultaneously. Each reactor is designed as single use reactor that has the ability to continuously monitor and control the pH, DO and temperature. The reactor aeration is supplied by sparging air from gas feeds that can be controlled individually. Furthermore, pH can be controlled by gas sparging using either dilute ammonia or carbon dioxide directly into the culture medium through a membrane at the bottom of each reactor. Chen et al., (2009) evaluated the Micro–24 system for the mammalian cell culture process development and found the Micro–24 system is suitable as scaledown tool for cell culture application. The result showed that intra-well reproducibility, cell growth, metabolites profiles and protein titres were scalable with 2 L bioreactors.


2021 ◽  
Vol 1754 (1) ◽  
pp. 012099
Author(s):  
Changfu Zhao ◽  
Guohua Cao ◽  
Hongchang Ding ◽  
Ying Zhang ◽  
Han Hou

Sign in / Sign up

Export Citation Format

Share Document