scholarly journals Composite Fiber Recovery: Integration into a Design for Recycling Approach

Author(s):  
Nicolas Perry ◽  
Stéphane Pompidou ◽  
Olivier Mantaux ◽  
Arnaud Gillet
2021 ◽  
pp. 002199832110075
Author(s):  
Tuğba Mutuk ◽  
Mevlüt Gürbüz

In this work, The hybrid hydroxyapatite (HaP), chitosan (CH) and graphene nanosheets (GNS) mixtures were applied by electrospinning on the surface of GNS and Si3N4 (SN) binary powder reinforced hybrid titanium (Ti) metal composites surface to improve composite biosurface functionallity. The surfaces of coated materials were characterized and antibacterial tests were carried on for their suitability in the industry by performing artificial body fluid tests. The hybrid nano fiber coatings formed a homogeneous structure on the composite. According to bioactivity tests and microstructure analysis, it was seen that HaP, which has the best results in the change of pH (pH= 11.80) values. The lowest mass change (0.0005 g) was observed on the 10th day of pure titanium. The highest mass change (0.0210 g) was obtained as on the HaP coated hybrid titanium composite. According to the antibacterial test result the hybrid nanofiber containing silver (Ag+) doped HaP on Ti composites showed the best antibacterial property aganist the E.coli. The fabricated electrospin coated hybrid composites can be a potantial candidate for dental, orthopedic implant applications and tissue engineering.


Author(s):  
Qian-Yu Wang ◽  
Zheng-Min Zhang ◽  
Lin Liu ◽  
Lu Bai ◽  
Rui-Ying Bao ◽  
...  

Poly(L-lactide) (PLA)/TiO2/Pt composite fiber membrane with internal porous channel structure is fabricated by skillfully tuning the breath figure mechanism and vapor induced phase separation mechanism with solute and solvent matching...


ACS Omega ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 4958-4967 ◽  
Author(s):  
Lei Ge ◽  
Juanjuan Yin ◽  
Dawei Yan ◽  
Wei Hong ◽  
Tifeng Jiao

2012 ◽  
Vol 455-456 ◽  
pp. 935-938
Author(s):  
Hai Quan Wang

- TiC/C composite fibers were prepared by vapor phase titanizing of the regular carbon fibers via chemical vapor deposition (CVD). The carbon fibers were titanized from the surface of the fiber to the core. Scanning electron microscope (SEM) and X-ray diffraction (XRD) were applied to characterize the morphology and structure of the TiC/C composite fibers. The influences of CVD reaction conditions such as temperature and reaction time on the TiC particle size and the thickness of the deposited layer were investigated. Higher temperature and longer time resulted in the growth of bigger size of the TiC crystal particles, and the particle uniformity was also decreased.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wenwen Yu ◽  
Fei Yang ◽  
Lei Wang ◽  
Yongli Liu ◽  
Jiangao Shi

The starch-based fishing composite fibers were prepared by one-step reactive extrusion and melt spinning. The effects of starch contents on the microstructural, thermal, dynamic mechanical, and mechanical properties of starch-based composite fibers were studied. And the degradation behaviors in soil of the fibers were also investigated. The compatibility between starch and HDPE is improved significantly by grafting maleic anhydride (MA) using one-step reactive blending extrusion. As the starch content increased, the melting temperature and the crystallinity of the fibers gradually decreased due to fluffy internal structures. Dynamic mechanical analysis showed that the transition peak α in the high-temperature region was gradually weakened and narrowed with increasing starch content; moreover, a shoulder appeared on the low-temperature side of the α peak was assigned to the β-relaxation related to starch phase. In addition, the mechanical results showed the significant decrease in the breaking strength and increase in the elongation at break of the starch-based composite fibers as the starch content increased. After degradation in soil for 5 months, the surface of the composite fibers had been deteriorated, while flocculent layers were observed and a large number of microfibers appeared. And the weight loss rate of the starch-based composite fibers (5.2~34.8%) significantly increased with increasing starch content (50~90 wt%).


Sign in / Sign up

Export Citation Format

Share Document