Models for pesticide behavior in terrestrial environments

1983 ◽  
pp. 245-255 ◽  
Author(s):  
Alan Eschenroeder ◽  
Marcos Bonazountas ◽  
Richard Thomas
2021 ◽  
Vol 9 (4) ◽  
pp. 859
Author(s):  
Andrea Firrincieli ◽  
Andrea Negroni ◽  
Giulio Zanaroli ◽  
Martina Cappelletti

Increasing number of metagenome sequencing studies have proposed a central metabolic role of still understudied Archaeal members in natural and artificial ecosystems. However, their role in hydrocarbon cycling, particularly in the anaerobic biodegradation of aliphatic and aromatic hydrocarbons, is still mostly unknown in both marine and terrestrial environments. In this work, we focused our study on the metagenomic characterization of the archaeal community inhabiting the Mar Piccolo (Taranto, Italy, central Mediterranean) sediments heavily contaminated by petroleum hydrocarbons and polychlorinated biphenyls (PCB). Among metagenomic bins reconstructed from Mar Piccolo microbial community, we have identified members of the Asgardarchaeota superphylum that has been recently proposed to play a central role in hydrocarbon cycling in natural ecosystems under anoxic conditions. In particular, we found members affiliated with Thorarchaeota, Heimdallarchaeota, and Lokiarchaeota phyla and analyzed their genomic potential involved in central metabolism and hydrocarbon biodegradation. Metabolic prediction based on metagenomic analysis identified the malonyl-CoA and benzoyl-CoA routes as the pathways involved in aliphatic and aromatic biodegradation in these Asgardarchaeota members. This is the first study to give insight into the archaeal community functionality and connection to hydrocarbon degradation in marine sediment historically contaminated by hydrocarbons.


2021 ◽  
Vol 9 (5) ◽  
pp. 1036
Author(s):  
Dongmei Lyu ◽  
Levini A. Msimbira ◽  
Mahtab Nazari ◽  
Mohammed Antar ◽  
Antoine Pagé ◽  
...  

Terrestrial plants evolution occurred in the presence of microbes, the phytomicrobiome. The rhizosphere microbial community is the most abundant and diverse subset of the phytomicrobiome and can include both beneficial and parasitic/pathogenic microbes. Prokaryotes of the phytomicrobiome have evolved relationships with plants that range from non-dependent interactions to dependent endosymbionts. The most extreme endosymbiotic examples are the chloroplasts and mitochondria, which have become organelles and integral parts of the plant, leading to some similarity in DNA sequence between plant tissues and cyanobacteria, the prokaryotic symbiont of ancestral plants. Microbes were associated with the precursors of land plants, green algae, and helped algae transition from aquatic to terrestrial environments. In the terrestrial setting the phytomicrobiome contributes to plant growth and development by (1) establishing symbiotic relationships between plant growth-promoting microbes, including rhizobacteria and mycorrhizal fungi, (2) conferring biotic stress resistance by producing antibiotic compounds, and (3) secreting microbe-to-plant signal compounds, such as phytohormones or their analogues, that regulate aspects of plant physiology, including stress resistance. As plants have evolved, they recruited microbes to assist in the adaptation to available growing environments. Microbes serve themselves by promoting plant growth, which in turn provides microbes with nutrition (root exudates, a source of reduced carbon) and a desirable habitat (the rhizosphere or within plant tissues). The outcome of this coevolution is the diverse and metabolically rich microbial community that now exists in the rhizosphere of terrestrial plants. The holobiont, the unit made up of the phytomicrobiome and the plant host, results from this wide range of coevolved relationships. We are just beginning to appreciate the many ways in which this complex and subtle coevolution acts in agricultural systems.


2021 ◽  
pp. 1-30
Author(s):  
Daniel Wolf ◽  
Thomas Kolb ◽  
Karolin Ryborz ◽  
Susann Heinrich ◽  
Imke Schäfer ◽  
...  

Abstract During glacial times, the North Atlantic region was affected by serious climate changes corresponding to Dansgaard-Oeschger cycles that were linked to dramatic shifts in sea temperature and moisture transfer to the continents. However, considerable efforts are still needed to understand the effects of these shifts on terrestrial environments. In this context, the Iberian Peninsula is particularly interesting because of its close proximity to the North Atlantic, although the Iberian interior lacks paleoenvironmental information so far because suitable archives are rare. Here we provide an accurate impression of the last glacial environmental developments in central Iberia based on comprehensive investigations using the upper Tagus loess record. A multi-proxy approach revealed that phases of loess formation during Marine Isotope Stage (MIS) 2 (and upper MIS 3) were linked to utmost aridity, coldness, and highest wind strengths in line with the most intense Greenland stadials also including Heinrich Events 3–1. Lack of loess deposition during the global last glacial maximum (LGM) suggests milder conditions, which agrees with less-cold sea surface temperatures (SST) off the Iberian margin. Our results demonstrate that geomorphological system behavior in central Iberia is highly sensitive to North Atlantic SST fluctuations, thus enabling us to reconstruct a detailed hydrological model in relation to marine–atmospheric circulation patterns.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 89
Author(s):  
Samantha Sparapani ◽  
Cassandra Millet-Boureima ◽  
Joshua Oliver ◽  
Kathy Mu ◽  
Pegah Hadavi ◽  
...  

Vasopressins are evolutionarily conserved peptide hormones. Mammalian vasopressin functions systemically as an antidiuretic and regulator of blood and cardiac flow essential for adapting to terrestrial environments. Moreover, vasopressin acts centrally as a neurohormone involved in social and parental behavior and stress response. Vasopressin synthesis in several cell types, storage in intracellular vesicles, and release in response to physiological stimuli are highly regulated and mediated by three distinct G protein coupled receptors. Other receptors may bind or cross-bind vasopressin. Vasopressin is regulated spatially and temporally through transcriptional and post-transcriptional mechanisms, sex, tissue, and cell-specific receptor expression. Anomalies of vasopressin signaling have been observed in polycystic kidney disease, chronic heart failure, and neuropsychiatric conditions. Growing knowledge of the central biological roles of vasopressin has enabled pharmacological advances to treat these conditions by targeting defective systemic or central pathways utilizing specific agonists and antagonists.


Author(s):  
Thomas Vourc’h ◽  
Julien Léopoldès ◽  
Annick Méjean ◽  
Hassan Peerhossaini

Cyanobacteria are photosynthetic micro-organisms colonizing all aquatic and terrestrial environments. The motility of such living micro-organisms should make their diffusion distinct from typical Brownian motion. This diffusion can be investigated in terms of global behavior (Fickian or not) and in terms of displacement probabilities, which provide more detail about the motility process. Using cyanobacterium Synechocystis sp. PCC 6803 as the model micro-organism, we carry out time-lapse video microscopy to track and analyze the bacteria’s trajectories, from which we compute the mean-squared displacement (MSD) and the distribution function of displacement probabilities. We find that the motility of Synechocystis sp. PCC 6803 is intermittent: high-motility “run” phases are separated by low-motility “tumble” phases corresponding to trapped states. However, this intermittent motility leads to a Fickian diffusive behavior, as shown by the evolution of the MSD with time.


Sign in / Sign up

Export Citation Format

Share Document