An Immunocytochemical Comparative Analysis of Tau in Neurodegenerative Diseases

Author(s):  
Nancy J. Pollock ◽  
Suzanne S. Mirra ◽  
John G. Wood
2018 ◽  
Vol 64 (1) ◽  
pp. 84-93 ◽  
Author(s):  
G.V. Ramenskaia ◽  
E.V. Melnik ◽  
A.E. Petukhov

Phospholipase D (PLD) is one of the key enzymes that catalyzes the hydrolysis of cell membrane phospholipids. In this review current knowledge about six human PLD isoforms, their structure and role in physiological and pathological processes is summarized. Comparative analysis of PLD isoforms structure is presented. The mechanism of the hydrolysis and transphosphatidylation performed by PLD is described. The PLD1 and PLD2 role in the pathogenesis of some cancer, infectious, thrombotic and neurodegenerative diseases is analyzed. The prospects of PLD isoform-selective inhibitors development are shown in the context of the clinical usage and the already-existing inhibitors are characterized. Moreover, the formation of phosphatidylethanol (PEth), the alcohol abuse biomarker, as the result of PLD-catalyzed phospholipid transphosphatidylation is considered.


Author(s):  
Gwen E. Owens ◽  
Danielle M. New ◽  
Alejandra I. Olvera ◽  
Julia Ashlyn Manzella ◽  
Brittney L. Macon ◽  
...  

Huntington's disease is one of nine neurodegenerative diseases caused by a polyglutamine (polyQ)-repeat expansion. An anti-polyQ antigen-binding fragment, MW1 Fab, was crystallized both on Earth and on the International Space Station, a microgravity environment where convection is limited. Once the crystals returned to Earth, the number, size and morphology of all crystals were recorded, and X-ray data were collected from representative crystals. The results generally agreed with previous microgravity crystallization studies. On average, microgravity-grown crystals were 20% larger than control crystals grown on Earth, and microgravity-grown crystals had a slightly improved mosaicity (decreased by 0.03°) and diffraction resolution (decreased by 0.2 Å) compared with control crystals grown on Earth. However, the highest resolution and lowest mosaicity crystals were formed on Earth, and the highest-quality crystal overall was formed on Earth after return from microgravity.


2019 ◽  
Vol 70 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Ewa M. Guzik-Makaruk ◽  
Emil W. Pływaczewski ◽  
Katarzyna Laskowska ◽  
Wojciech Filipkowski ◽  
Emilia Jurgielewicz-Delegacz ◽  
...  

2006 ◽  
Vol 53 (2) ◽  
pp. 279-287 ◽  
Author(s):  
Monika Piwowar ◽  
Jan Meus ◽  
Piotr Piwowar ◽  
Zdzisław Wiśniowski ◽  
Justyna Stefaniak ◽  
...  

Characteristics of 64 possible tandem trinucleotide repeats (TSSR) from Homo sapiens (hs), Mus musculus (mm) and Rattus norvegicus (rn) genomes are presented. Comparative analysis of TSSR frequency depending on their repetitiveness and similarity of the TSSR length distributions is shown. Comparative analysis of TSSR sequence motifs and association between type of motif and its length (n) using rho-coefficient method (quantitatively measuring the association between variables in contingency tables) is presented. These analyses were carried out in the context of neurodegenerative diseases based on trinucleotide tandems. The length of these tandems and their relation to other TSSR is estimated. It was found that the higher repetitiveness (n) the lower frequency of trinucleotides tandems. Differences between genomes under consideration, especially in longer than n=9 TSSR were discussed. A significantly higher frequency off A- and T-rich tandems is observed in the human genome (as well as in human mRNA). This observation also applies to mm and rn, although lower abundant in proportion to human genomes was found. The origin of elongation (or shortening) of TSSR seems to be neither frequency nor length dependent. The results of TSSR analysis presented in this work suggest that neurodegenerative disease-related microsatellites do not differ versus the other except the lower frequency versus the other TSSR. CAG occurs with relatively high frequency in human mRNA, although there are other TSSR with higher frequency that do not cause comparable disease disorders. It suggests that the mechanism of TSSR instability is not the only origin of neurodegenerative diseases.


2013 ◽  
Vol 55 ◽  
pp. 119-131 ◽  
Author(s):  
Bernadette Carroll ◽  
Graeme Hewitt ◽  
Viktor I. Korolchuk

Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our ‘ageing’ world.


2020 ◽  
Vol 4 (6) ◽  
pp. 645-675
Author(s):  
Parasuraman Padmanabhan ◽  
Mathangi Palanivel ◽  
Ajay Kumar ◽  
Domokos Máthé ◽  
George K. Radda ◽  
...  

Neurodegenerative diseases (NDDs), including Alzheimer's disease (AD) and Parkinson's disease (PD), affect the ageing population worldwide and while severely impairing the quality of life of millions, they also cause a massive economic burden to countries with progressively ageing populations. Parallel with the search for biomarkers for early detection and prediction, the pursuit for therapeutic approaches has become growingly intensive in recent years. Various prospective therapeutic approaches have been explored with an emphasis on early prevention and protection, including, but not limited to, gene therapy, stem cell therapy, immunotherapy and radiotherapy. Many pharmacological interventions have proved to be promising novel avenues, but successful applications are often hampered by the poor delivery of the therapeutics across the blood-brain-barrier (BBB). To overcome this challenge, nanoparticle (NP)-mediated drug delivery has been considered as a promising option, as NP-based drug delivery systems can be functionalized to target specific cell surface receptors and to achieve controlled and long-term release of therapeutics to the target tissue. The usefulness of NPs for loading and delivering of drugs has been extensively studied in the context of NDDs, and their biological efficacy has been demonstrated in numerous preclinical animal models. Efforts have also been made towards the development of NPs which can be used for targeting the BBB and various cell types in the brain. The main focus of this review is to briefly discuss the advantages of functionalized NPs as promising theranostic agents for the diagnosis and therapy of NDDs. We also summarize the results of diverse studies that specifically investigated the usage of different NPs for the treatment of NDDs, with a specific emphasis on AD and PD, and the associated pathophysiological changes. Finally, we offer perspectives on the existing challenges of using NPs as theranostic agents and possible futuristic approaches to improve them.


Sign in / Sign up

Export Citation Format

Share Document