Oxygen Free Radicals, Reactive Oxygen Species

2013 ◽  
pp. 1622-1622
1992 ◽  
Vol 12 (6) ◽  
pp. 433-443 ◽  
Author(s):  
W. G. Okunade ◽  
O. O. Olorunsogo

The presence of detectagle amounts of non-heme iron in erythrocyte ghost membranes have been postulated to lead to the initiation of membrane lipid peroxidation and the attendant perturbation of membrane functions. We have investigated the presence of non-heme iron and endogenous products of lipid peroxidation in erythrocyte membranes of normal and kwashiorkor (KWA) subjects and assessed the susceptibility of the membranes to exogenously generated reactive oxygen species. The modulation of the basal and calmodulin-stimulated calcium-pumping activity of these membranes by reactive oxygen species was also assessed. The results show the presence of significant amounts of non-heme iron and endogenous free radical reaction products in the red cell membranes of KWA subjects compared with that of normal children. Estimation of the extent of lipid peroxidation in the presence of exogenously generated reactive oxygen species further revealed that erythrocyte ghost membranes of KWA subjects are more susceptible to oxidative stress than those of normal individuals. Although both the basal and calmodulin-stimulated activities of the membrane-bound Ca2+-pump enzyme in normal and KWA subjects were inhibited by oxygen-free radicals, the erythrocyte enzyme in KWA subjects showed higher susceptibility to inhibition by oxygen free radicals than that of normal individuals. We propose that the reduced erythrocyte calcium-pump function in KWA is not unconnected with excessive generation of reactive oxygen species.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Gabriel Sigmund ◽  
Cristina Santín ◽  
Marc Pignitter ◽  
Nathalie Tepe ◽  
Stefan H. Doerr ◽  
...  

AbstractGlobally landscape fires produce about 256 Tg of pyrogenic carbon or charcoal each year. The role of charcoal as a source of environmentally persistent free radicals, which are precursors of potentially harmful reactive oxygen species, is poorly constrained. Here, we analyse 60 charcoal samples collected from 10 wildfires, that include crown as well as surface fires in forest, shrubland and grassland spanning different boreal, temperate, subtropical and tropical climate. Using electron spin resonance spectroscopy, we measure high concentrations of environmentally persistent free radicals in charcoal samples, much higher than those found in soils. Concentrations increased with degree of carbonization and woody fuels favoured higher concentrations. Moreover, environmentally persistent free radicals remained stable for an unexpectedly long time of at least 5 years. We suggest that wildfire charcoal is an important global source of environmentally persistent free radicals, and therefore potentially of harmful reactive oxygen species.


Author(s):  
Sirohi Shikha ◽  
Tandon Prof. Anupama ◽  
Banerjee Prof. B.D. ◽  
Kumar Ranjeet

Radiation is a common occurrence in our daily lives that comes from both natural and man-made sources. Ionizing Radiation (IR) causes damage either directly or indirectly through the generation of reactive oxygen species (ROS). Oxidative damage to DNA, lipids, proteins, and many metabolites occurs through a complex series of processes that are enhanced by endogenous signalling which is activated by free radicals. Though literature is abundant on ROS and antioxidants at high doses, no study to the best of our knowledge has assessed the ROS levels after Multi Detector Computed Tomography (MDCT) examination (i.e. in diagnostic range radiation). The aim of the present study was to assess the production of ROS after diagnostic level radiation by MDCT examination and at 24 hour follow up. The study involved fifty patients posted for clinically indicated MDCT which were recruited. The average radiation dose was 2-9 mGy. Three blood samples were drawn, one prior to CT (control sample), within half an hour of CT (post CT) and 24 hrs after CT. 3 ml venous blood was withdrawn in aseptic conditions and immediately serum was isolated for ROS assessment. The blood examination results were compared in immediate and post 24 hour after MDCT and both were compared with control values and correlated with radiation parameters. Our results have shown a significant increase in ROS level in immediate post CT samples compared to prior CT scan samples (control) (p value <0.0001). The ROS levels reduced at 24 hours compared to immediate post CT, however they were still higher than control values. Our findings reflect that there is a rapid increase in free radicals production in the mitochondria after diagnostic level radiation. Detection of higher ROS levels at 24 hours suggests incomplete repair with the presence of some residual oxidative species at 24 hours.


2002 ◽  
Vol 11 (6) ◽  
pp. 543-551 ◽  
Author(s):  
Caryl Goodyear-Bruch ◽  
Janet D. Pierce

Oxygen-derived free radicals play an important role in the development of disease in critically ill patients. Normally, oxygen free radicals are neutralized by antioxidants such as vitamin E or enzymes such as superoxide dismutase. However, in patients who require intensive care, oxygen free radicals become a problem when either a decrease in the removal or an overproduction of the radicals occurs. This oxidative stress and the damage due to it have been implicated in many diseases in critically ill patients. Many drugs and treatments now being investigated are directed toward preventing the damage from oxidative stress. The formation of reactive oxygen species, the damage caused by them, and the body’s defense system against them are reviewed. New interventions are described that may be used in critically ill patients to prevent or treat oxidative damage.


2015 ◽  
Vol 51 (89) ◽  
pp. 16139-16142 ◽  
Author(s):  
Yuyuan Yao ◽  
Bin Jiang ◽  
Yajun Mao ◽  
Juan Chen ◽  
Zhenfu Huang ◽  
...  

A positive role of PFRs in enhancing reactive oxygen species (ROS) generation for an extreme rate enhancement in environmental pollutant decomposition is reported.


Sign in / Sign up

Export Citation Format

Share Document