The Effect of Diet on Gut Microbiota in Humans Living in Different Environments: A Metagenomic Approach

Author(s):  
Carlotta De Filippo ◽  
Duccio Cavalieri ◽  
Paolo Lionetti
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Takashi Ito ◽  
Takaaki Totoki ◽  
Seiya Takada ◽  
Shotaro Otsuka ◽  
Ikuro Maruyama

AbstractThe gut microbiota has tremendous potential to affect the host’s health, in part by synthesizing vitamins and generating nutrients from food that is otherwise indigestible by the host. 1,5-Anhydro-d-fructose (1,5-AF) is a monosaccharide with a wide range of bioactive potentials, including anti-oxidant, anti-inflammatory, and anti-microbial effects. Based on its potential benefits and minimal toxicity, it is anticipated that 1,5-AF will be used as a dietary supplement to support general health. However, the effects of 1,5-AF on the gut microbiota are yet to be clarified. Here, using an unbiased metagenomic approach, we profiled the bacterial taxa and functional genes in the caecal microbiota of mice fed a diet containing either 2% 1,5-AF or a reference sweetener. Supplementation with 1,5-AF altered the composition of the gut microbiota, enriching the proportion of Faecalibacterium prausnitzii. 1,5-AF also altered the metabolomic profile of the gut microbiota, enriching genes associated with nicotinamide adenine dinucleotide biosynthesis. These findings support the potential benefits of 1,5-AF, but further studies are required to clarify the impact of 1,5-AF on health and disease.


2020 ◽  
Author(s):  
Weiwei Wang ◽  
Xiaojuan Wei ◽  
Lingyu Wu ◽  
Xiaofei Shang ◽  
Fusheng Cheng ◽  
...  

Abstract The drug resistance has been partly driven by the overuse of antimicrobials in agricultural feeding. Better understanding of the antibiotic resistance in gut of bovine is needed to assess its potential effects based on metagenomic approach and analysis. In this study, we collected 40 fecal samples to explore the drug resistance deriving from antibiotics in bacterial community by an analysis of the diversity and difference of antibiotic resistant genes (ARGs) in gut microbiota from yak, beef and dairy cattle. 1688 genes were annotated, including 734 ARG subtypes in summary. The ARGs were related with tetracycline, quinolone, β-lactam, aminoglycoside, in accordance with the antibiotics widely used in clinic for humans or animals. The emergence, prevalence and differences in resistance genes in the intestines of yaks, beef and dairy cattle may be caused by the selective pressure of different feeding patterns. Additionally, the abundance of ARGs in yak was lower than in beef and dairy cattle, while the abundance of integron, a kind of mobile genetic elements (MGEs), was higher than those in beef and dairy cattle. Furthermore, the results of this study demonstrated that a comprehensive profile of various ARGs among yak, beef and dairy cattle for providing a basic research.


Author(s):  
Sunmin Park ◽  
Sunna Kang ◽  
Da Sol Kim

Abstract. Folate and vitamin B12(V-B12) deficiencies are associated with metabolic diseases that may impair memory function. We hypothesized that folate and V-B12 may differently alter mild cognitive impairment, glucose metabolism, and inflammation by modulating the gut microbiome in rats with Alzheimer’s disease (AD)-like dementia. The hypothesis was examined in hippocampal amyloid-β infused rats, and its mechanism was explored. Rats that received an amyloid-β(25–35) infusion into the CA1 region of the hippocampus were fed either control(2.5 mg folate plus 25 μg V-B12/kg diet; AD-CON, n = 10), no folate(0 folate plus 25 μg V-B12/kg diet; AD-FA, n = 10), no V-B12(2.5 mg folate plus 0 μg V-B12/kg diet; AD-V-B12, n = 10), or no folate plus no V-B12(0 mg folate plus 0 μg V-B12/kg diet; AD-FAB12, n = 10) in high-fat diets for 8 weeks. AD-FA and AD-VB12 exacerbated bone mineral loss in the lumbar spine and femur whereas AD-FA lowered lean body mass in the hip compared to AD-CON(P < 0.05). Only AD-FAB12 exacerbated memory impairment by 1.3 and 1.4 folds, respectively, as measured by passive avoidance and water maze tests, compared to AD-CON(P < 0.01). Hippocampal insulin signaling and neuroinflammation were attenuated in AD-CON compared to Non-AD-CON. AD-FAB12 impaired the signaling (pAkt→pGSK-3β) and serum TNF-α and IL-1β levels the most among all groups. AD-CON decreased glucose tolerance by increasing insulin resistance compared to Non-AD-CON. AD-VB12 and AD-FAB12 increased insulin resistance by 1.2 and 1.3 folds, respectively, compared to the AD-CON. AD-CON and Non-AD-CON had a separate communities of gut microbiota. The relative counts of Bacteroidia were lower and those of Clostridia were higher in AD-CON than Non-AD-CON. AD-FA, but not V-B12, separated the gut microbiome community compared to AD-CON and AD-VB12(P = 0.009). In conclusion, folate and B-12 deficiencies impaired memory function by impairing hippocampal insulin signaling and gut microbiota in AD rats.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
EM Pferschy-Wenzig ◽  
K Koskinen ◽  
C Moissl-Eichinger ◽  
R Bauer

Sign in / Sign up

Export Citation Format

Share Document