Guanylyl cyclases in unicellular organisms

2002 ◽  
pp. 149-158
Author(s):  
Jürgen U. Linder ◽  
Joachim E. Schultz
Author(s):  
Andrew Clarke

Freezing is a widespread ecological challenge, affecting organisms in over half the terrestrial environment as well as both polar seas. With very few exceptions, if a cell freezes internally, it dies. Polar teleost fish in shallow waters avoid freezing by synthesising a range of protein or glycoprotein antifreezes. Terrestrial organisms are faced with a far greater thermal challenge, and exhibit a more complex array of responses. Unicellular organisms survive freezing temperatures by preventing ice nucleating within the cytosol, and tolerating the cellular dehydration and membrane disruption that follows from ice forming in the external environment. Multicellular organisms survive freezing temperatures by manipulating the composition of the extracellular body fluids. Terrestrial organisms may freeze at high subzero temperatures, often promoted by ice nucleating proteins, and small molecular mass cryoprotectants (often sugars and polyols) moderate the osmotic stress on cells. A range of chaperone proteins (dehydrins, LEA proteins) help maintain the integrity of membranes and macromolecules. Thermal hysteresis (antifreeze) proteins prevent damaging recrystallisation of ice. In some cases arthropods and higher plants prevent freezing in their extracellular fluids and survive by supercooling. Vitrification of extracellular water, or of the cell cytosol, may be a more widespread response to very cold temperatures than recognised to date.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joseph d’Alessandro ◽  
Alex Barbier--Chebbah ◽  
Victor Cellerin ◽  
Olivier Benichou ◽  
René Marc Mège ◽  
...  

AbstractLiving cells actively migrate in their environment to perform key biological functions—from unicellular organisms looking for food to single cells such as fibroblasts, leukocytes or cancer cells that can shape, patrol or invade tissues. Cell migration results from complex intracellular processes that enable cell self-propulsion, and has been shown to also integrate various chemical or physical extracellular signals. While it is established that cells can modify their environment by depositing biochemical signals or mechanically remodelling the extracellular matrix, the impact of such self-induced environmental perturbations on cell trajectories at various scales remains unexplored. Here, we show that cells can retrieve their path: by confining motile cells on 1D and 2D micropatterned surfaces, we demonstrate that they leave long-lived physicochemical footprints along their way, which determine their future path. On this basis, we argue that cell trajectories belong to the general class of self-interacting random walks, and show that self-interactions can rule large scale exploration by inducing long-lived ageing, subdiffusion and anomalous first-passage statistics. Altogether, our joint experimental and theoretical approach points to a generic coupling between motile cells and their environment, which endows cells with a spatial memory of their path and can dramatically change their space exploration.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Daiki Andoh ◽  
Yukio-Pegio Gunji

The Lévy walk is a pattern that is often seen in the movement of living organisms; it has both ballistic and random features and is a behavior that has been recognized in various animals and unicellular organisms, such as amoebae, in recent years. We proposed an amoeba locomotion model that implements Bayesian and inverse Bayesian inference as a Lévy walk algorithm that balances exploration and exploitation, and through a comparison with general random walks, we confirmed its effectiveness. While Bayesian inference is expressed only by P(h) = P(h|d), we introduce inverse Bayesian inference expressed as P(d|h) = P(d) in a symmetry fashion. That symmetry contributes to balancing contracting and expanding the probability space. Additionally, the conditions of various environments were set, and experimental results were obtained that corresponded to changes in gait patterns with respect to changes in the conditions of actual metastatic cancer cells.


2005 ◽  
Vol 16 (03) ◽  
pp. 389-392 ◽  
Author(s):  
D. STAUFFER ◽  
H. ARNDT

Can unicellular organisms survive a drastic temperature change, and adapt to it after many generations? In simulations of the Penna model of biological aging, both extinction and adaptation were found for asexual and sexual reproduction as well as for parasex. These model investigations are the basis for the design of evolution experiments with heterotrophic flagellates.


2001 ◽  
Vol 204 (2) ◽  
pp. 305-314 ◽  
Author(s):  
A. Nighorn ◽  
P.J. Simpson ◽  
D.B. Morton

Guanylyl cyclases are usually characterized as being either soluble (sGCs) or receptor (rGCs). We have recently cloned a novel guanylyl cyclase, MsGC-I, from the developing nervous system of the hawkmoth Manduca sexta that cannot be classified as either an sGC or an rGC. MsGC-I shows highest sequence identity with receptor guanylyl cyclases throughout its catalytic and dimerization domains, but does not contain the ligand-binding, transmembrane or kinase-like domains characteristic of receptor guanylyl cyclases. In addition, MsGC-I contains a C-terminal extension of 149 amino acid residues. In this paper, we report the expression of MsGC-I in the adult. Northern blots show that it is expressed preferentially in the nervous system, with high levels in the pharate adult brain and antennae. In the antennae, immunohistochemical analyses show that it is expressed in the cell bodies and dendrites, but not axons, of olfactory receptor neurons. In the brain, it is expressed in a variety of sensory neuropils including the antennal and optic lobes. It is also expressed in structures involved in higher-order processing including the mushroom bodies and central complex. This complicated expression pattern suggests that this novel guanylyl cyclase plays an important role in mediating cyclic GMP levels in the nervous system of Manduca sexta.


Sign in / Sign up

Export Citation Format

Share Document