scholarly journals Requirement of the Poly(A) Tail in Coronavirus Genome Replication

Author(s):  
Jeannie F. Spagnolo ◽  
Brenda G. Hogue
Keyword(s):  
Author(s):  
Kilian Vogele ◽  
Elisabeth Falgenhauer ◽  
Sophie von Schönberg ◽  
Friedrich C. Simmel ◽  
Tobias Pirzer

2020 ◽  
Vol 2 (12) ◽  
pp. 5777-5789
Author(s):  
Ranjeet Dungdung ◽  
Manikanta Bayal ◽  
Lathika Valliyott ◽  
Unnikrishnan Unniyampurath ◽  
Swapna S. Nair ◽  
...  

The graphical abstract represents the synthesis of size engineered ZnS QDs for conjugating anti-viral drug (MPA) and its safe and effective delivery against cytoplasmically replicating dengue virus 2.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1260
Author(s):  
Diego S. Ferrero ◽  
Michela Falqui ◽  
Nuria Verdaguer

RNA viruses typically encode their own RNA-dependent RNA polymerase (RdRP) to ensure genome replication and transcription. The closed “right hand” architecture of RdRPs encircles seven conserved structural motifs (A to G) that regulate the polymerization activity. The four palm motifs, arranged in the sequential order A to D, are common to all known template dependent polynucleotide polymerases, with motifs A and C containing the catalytic aspartic acid residues. Exceptions to this design have been reported in members of the Permutotetraviridae and Birnaviridae families of positive single stranded (+ss) and double-stranded (ds) RNA viruses, respectively. In these enzymes, motif C is located upstream of motif A, displaying a permuted C–A–B–D connectivity. Here we study the details of the replication elongation process in the non-canonical RdRP of the Thosea asigna virus (TaV), an insect virus from the Permutatetraviridae family. We report the X-ray structures of three replicative complexes of the TaV polymerase obtained with an RNA template-primer in the absence and in the presence of incoming rNTPs. The structures captured different replication events and allowed to define the critical interactions involved in: (i) the positioning of the acceptor base of the template strand, (ii) the positioning of the 3’-OH group of the primer nucleotide during RNA replication and (iii) the recognition and positioning of the incoming nucleotide. Structural comparisons unveiled a closure of the active site on the RNA template-primer binding, before rNTP entry. This conformational rearrangement that also includes the repositioning of the motif A aspartate for the catalytic reaction to take place is maintained on rNTP and metal ion binding and after nucleotide incorporation, before translocation.


2020 ◽  
Vol 48 (22) ◽  
pp. 12751-12777
Author(s):  
Cathia Rausch ◽  
Patrick Weber ◽  
Paulina Prorok ◽  
David Hörl ◽  
Andreas Maiser ◽  
...  

Abstract To ensure error-free duplication of all (epi)genetic information once per cell cycle, DNA replication follows a cell type and developmental stage specific spatio-temporal program. Here, we analyze the spatio-temporal DNA replication progression in (un)differentiated mouse embryonic stem (mES) cells. Whereas telomeres replicate throughout S-phase, we observe mid S-phase replication of (peri)centromeric heterochromatin in mES cells, which switches to late S-phase replication upon differentiation. This replication timing reversal correlates with and depends on an increase in condensation and a decrease in acetylation of chromatin. We further find synchronous duplication of the Y chromosome, marking the end of S-phase, irrespectively of the pluripotency state. Using a combination of single-molecule and super-resolution microscopy, we measure molecular properties of the mES cell replicon, the number of replication foci active in parallel and their spatial clustering. We conclude that each replication nanofocus in mES cells corresponds to an individual replicon, with up to one quarter representing unidirectional forks. Furthermore, with molecular combing and genome-wide origin mapping analyses, we find that mES cells activate twice as many origins spaced at half the distance than somatic cells. Altogether, our results highlight fundamental developmental differences on progression of genome replication and origin activation in pluripotent cells.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 480
Author(s):  
Lin Tao ◽  
Xiaoyun He ◽  
Yanting Jiang ◽  
Yufang Liu ◽  
Yina Ouyang ◽  
...  

The litter size of domestic goats and sheep is an economically important trait that shows variation within breeds. Strenuous efforts have been made to understand the genetic mechanisms underlying prolificacy in goats and sheep. However, there has been a paucity of research on the genetic convergence of prolificacy between goats and sheep, which likely arose because of similar natural and artificial selection forces. Here, we performed comparative genomic and transcriptomic analyses to identify the genetic convergence of prolificacy between goats and sheep. By combining genomic and transcriptomic data for the first time, we identified this genetic convergence in (1) positively selected genes (CHST11 and SDCCAG8), (2) differentially expressed genes (SERPINA14, RSAD2, and PPIG at follicular phase, and IGF1, GPRIN3, LIPG, SLC7A11, and CHST15 at luteal phase), and (3) biological pathways (genomic level: osteoclast differentiation, ErbB signaling pathway, and relaxin signaling pathway; transcriptomic level: the regulation of viral genome replication at follicular phase, and protein kinase B signaling and antigen processing and presentation at luteal phase). These results indicated the potential physiological convergence and enhanced our understanding of the overlapping genetic makeup underlying litter size in goats and sheep.


2019 ◽  
Vol 16 (5) ◽  
pp. 429-436 ◽  
Author(s):  
Carolin A. Müller ◽  
Michael A. Boemo ◽  
Paolo Spingardi ◽  
Benedikt M. Kessler ◽  
Skirmantas Kriaucionis ◽  
...  
Keyword(s):  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Na Zhang ◽  
Hong Shan ◽  
Mingdong Liu ◽  
Tianhao Li ◽  
Rui Luo ◽  
...  

AbstractParamyxoviruses, including the mumps virus, measles virus, Nipah virus and Sendai virus (SeV), have non-segmented single-stranded negative-sense RNA genomes which are encapsidated by nucleoproteins into helical nucleocapsids. Here, we reported a double-headed SeV nucleocapsid assembled in a tail-to-tail manner, and resolved its helical stems and clam-shaped joint at the respective resolutions of 2.9 and 3.9 Å, via cryo-electron microscopy. Our structures offer important insights into the mechanism of the helical polymerization, in particular via an unnoticed exchange of a N-terminal hole formed by three loops of nucleoproteins, and unveil the clam-shaped joint in a hyper-closed state for nucleocapsid dimerization. Direct visualization of the loop from the disordered C-terminal tail provides structural evidence that C-terminal tail is correlated to the curvature of nucleocapsid and links nucleocapsid condensation and genome replication and transcription with different assembly forms.


Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1042
Author(s):  
Cheepudom ◽  
Lin ◽  
Lee ◽  
Meng

Thermobifida fusca is of biotechnological interest due to its ability to produce an array of plant cell wall hydrolytic enzymes. Nonetheless, only one T. fusca bacteriophage with genome information has been reported to date. This study was aimed at discovering more relevant bacteriophages to expand the existing knowledge of phage diversity for this host species. With this end in view, a thermostable T. fusca bacteriophage P318, which belongs to the Siphoviridae family, was isolated and characterized. P318 has a double-stranded DNA genome of 48,045 base pairs with 3′-extended COS ends, on which 52 putative ORFs are organized into clusters responsible for the order of genome replication, virion morphogenesis, and the regulation of the lytic/lysogenic cycle. In comparison with T. fusca and the previously discovered bacteriophage P1312, P318 has a much lower G+C content in its genome except at the region encompassing ORF42, which produced a protein with unknown function. P1312 and P318 share very few similarities in their genomes except for the regions encompassing ORF42 of P318 and ORF51 of P1312 that are homologous. Thus, acquisition of ORF42 by lateral gene transfer might be an important step in the evolution of P318.


2013 ◽  
Vol 195 (10) ◽  
pp. 2322-2328 ◽  
Author(s):  
L. Cubonova ◽  
T. Richardson ◽  
B. W. Burkhart ◽  
Z. Kelman ◽  
B. A. Connolly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document