Directional Selection and the Correlated Response

1997 ◽  
pp. 165-195
Author(s):  
Derek A. Roff
2020 ◽  
Author(s):  
Aaron J. Stern ◽  
Leo Speidel ◽  
Noah A. Zaitlen ◽  
Rasmus Nielsen

AbstractWe present a full-likelihood method to estimate and quantify polygenic adaptation from contemporary DNA sequence data. The method combines population genetic DNA sequence data and GWAS summary statistics from up to thousands of nucleotide sites in a joint likelihood function to estimate the strength of transient directional selection acting on a polygenic trait. Through population genetic simulations of polygenic trait architectures and GWAS, we show that the method substantially improves power over current methods. We examine the robustness of the method under uncorrected GWAS stratification, uncertainty and ascertainment bias in the GWAS estimates of SNP effects, uncertainty in the identification of causal SNPs, allelic heterogeneity, negative selection, and low GWAS sample size. The method can quantify selection acting on correlated traits, fully controlling for pleiotropy even among traits with strong genetic correlation (|rg| = 80%; c.f. schizophrenia and bipolar disorder) while retaining high power to attribute selection to the causal trait. We apply the method to study 56 human polygenic traits for signs of recent adaptation. We find signals of directional selection on pigmentation (tanning, sunburn, hair, P=5.5e-15, 1.1e-11, 2.2e-6, respectively), life history traits (age at first birth, EduYears, P=2.5e-4, 2.6e-4, respectively), glycated hemoglobin (HbA1c, P=1.2e-3), bone mineral density (P=1.1e-3), and neuroticism (P=5.5e-3). We also conduct joint testing of 137 pairs of genetically correlated traits. We find evidence of widespread correlated response acting on these traits (2.6-fold enrichment over the null expectation, P=1.5e-7). We find that for several traits previously reported as adaptive, such as educational attainment and hair color, a significant proportion of the signal of selection on these traits can be attributed to correlated response, vs direct selection (P=2.9e-6, 1.7e-4, respectively). Lastly, our joint test uncovers antagonistic selection that has acted to increase type 2 diabetes (T2D) risk and decrease HbA1c (P=1.5e-5).


2016 ◽  
Vol 113 (34) ◽  
pp. 9492-9497 ◽  
Author(s):  
Kristen R. R. Savell ◽  
Benjamin M. Auerbach ◽  
Charles C. Roseman

Variation in body form among human groups is structured by a blend of natural selection driven by local climatic conditions and random genetic drift. However, attempts to test ecogeographic hypotheses have not distinguished between adaptive traits (i.e., those that evolved as a result of selection) and those that evolved as a correlated response to selection on other traits (i.e., nonadaptive traits), complicating our understanding of the relationship between climate and morphological distinctions among populations. Here, we use evolutionary quantitative methods to test if traits previously identified as supporting ecogeographic hypotheses were actually adaptive by estimating the force of selection on individual traits needed to drive among-group differentiation. Our results show that not all associations between trait means and latitude were caused by selection acting directly on each individual trait. Although radial and tibial length and biiliac and femoral head breadth show signs of responses to directional selection matching ecogeographic hypotheses, the femur was subject to little or no directional selection despite having shorter values by latitude. Additionally, in contradiction to ecogeographic hypotheses, the humerus was under directional selection for longer values by latitude. Responses to directional selection in the tibia and radius induced a nonadaptive correlated response in the humerus that overwhelmed its own trait-specific response to selection. This result emphasizes that mean differences between groups are not good indicators of which traits are adaptations in the absence of information about covariation among characteristics.


2002 ◽  
Vol 80 (10) ◽  
pp. 2566 ◽  
Author(s):  
J. Estany ◽  
D. Villalba ◽  
M. Tor ◽  
D. Cubiló ◽  
J. L. Noguera

Genetics ◽  
2001 ◽  
Vol 159 (4) ◽  
pp. 1779-1788 ◽  
Author(s):  
Carlos D Bustamante ◽  
John Wakeley ◽  
Stanley Sawyer ◽  
Daniel L Hartl

Abstract In this article we explore statistical properties of the maximum-likelihood estimates (MLEs) of the selection and mutation parameters in a Poisson random field population genetics model of directional selection at DNA sites. We derive the asymptotic variances and covariance of the MLEs and explore the power of the likelihood ratio tests (LRT) of neutrality for varying levels of mutation and selection as well as the robustness of the LRT to deviations from the assumption of free recombination among sites. We also discuss the coverage of confidence intervals on the basis of two standard-likelihood methods. We find that the LRT has high power to detect deviations from neutrality and that the maximum-likelihood estimation performs very well when the ancestral states of all mutations in the sample are known. When the ancestral states are not known, the test has high power to detect deviations from neutrality for negative selection but not for positive selection. We also find that the LRT is not robust to deviations from the assumption of independence among sites.


Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 1119-1128 ◽  
Author(s):  
Elie S Dolgin ◽  
Sarah P Otto

AbstractThe segregation of alleles disrupts genetic associations at overdominant loci, causing a sexual population to experience a lower mean fitness compared to an asexual population. To investigate whether circumstances promoting increased sex exist within a population with heterozygote advantage, a model is constructed that monitors the frequency of alleles at a modifier locus that changes the relative allocation to sexual and asexual reproduction. The frequency of these modifier alleles changes over time as a correlated response to the dynamics at a fitness locus under overdominant selection. Increased sex can be favored in partially sexual populations that inbreed to some extent. This surprising finding results from the fact that inbred populations have an excess of homozygous individuals, for whom sex is always favorable. The conditions promoting increased levels of sex depend on the selection pressure against the homozygotes, the extent of sex and inbreeding in the population, and the dominance of the invading modifier allele.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1683-1699 ◽  
Author(s):  
Stuart J Macdonald ◽  
David B Goldstein

Abstract A quantitative trait locus (QTL) genetic analysis of morphological and reproductive traits distinguishing the sibling species Drosophila simulans and D. sechellia was carried out in a backcross design, using 38 markers with an average spacing of 8.4 cM. The direction of QTL effects for the size of the posterior lobe was consistent across the identified QTL, indicating directional selection for this trait. Directional selection also appears to have acted on testis length, indicating that sexual selection may have influenced many reproductive traits, although other forms of directional selection cannot be ruled out. Sex comb tooth number exhibited high levels of variation both within and among isofemale lines and showed no evidence for directional selection and, therefore, may not have been involved in the early speciation process. A database search for genes associated with significant QTL revealed a set of candidate loci for posterior lobe shape and size, sex comb tooth number, testis length, tibia length, and hybrid male fertility. In particular, decapentaplegic (dpp), a gene known to influence the genital arch, was found to be associated with the largest LOD peak for posterior lobe shape and size.


2021 ◽  
Vol 22 (1) ◽  
pp. 468
Author(s):  
Klára Konečná ◽  
Pavla Polanská Sováková ◽  
Karin Anteková ◽  
Jiří Fajkus ◽  
Miloslava Fojtová

Involvement of epigenetic mechanisms in the regulation of telomeres and transposable elements (TEs), genomic regions with the protective and potentially detrimental function, respectively, has been frequently studied. Here, we analyzed telomere lengths in Arabidopsis thaliana plants of Columbia, Landsberg erecta and Wassilevskija ecotypes exposed repeatedly to the hypomethylation drug zebularine during germination. Shorter telomeres were detected in plants growing from seedlings germinated in the presence of zebularine with a progression in telomeric phenotype across generations, relatively high inter-individual variability, and diverse responses among ecotypes. Interestingly, the extent of telomere shortening in zebularine Columbia and Wassilevskija plants corresponded to the transcriptional activation of TEs, suggesting a correlated response of these genomic elements to the zebularine treatment. Changes in lengths of telomeres and levels of TE transcripts in leaves were not always correlated with a hypomethylation of cytosines located in these regions, indicating a cytosine methylation-independent level of their regulation. These observations, including differences among ecotypes together with distinct dynamics of the reversal of the disruption of telomere homeostasis and TEs transcriptional activation, reflect a complex involvement of epigenetic processes in the regulation of crucial genomic regions. Our results further demonstrate the ability of plant cells to cope with these changes without a critical loss of the genome stability.


Sign in / Sign up

Export Citation Format

Share Document