Antibiotic Resistance and Transfer in Lactic Acid Bacteria

2003 ◽  
pp. 317-354
Author(s):  
Michael Teuber ◽  
Franziska Schwarz ◽  
Leo Meile
2012 ◽  
Vol 95 (9) ◽  
pp. 4775-4783 ◽  
Author(s):  
N. Zhou ◽  
J.X. Zhang ◽  
M.T. Fan ◽  
J. Wang ◽  
G. Guo ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Ilona Stefańska ◽  
Ewelina Kwiecień ◽  
Katarzyna Jóźwiak-Piasecka ◽  
Monika Garbowska ◽  
Marian Binek ◽  
...  

The spread of resistance to antibiotics is a major health concern worldwide due to the increasing rate of isolation of multidrug resistant pathogens hampering the treatment of infections. The food chain has been recognized as one of the key routes of antibiotic resistant bacteria transmission between animals and humans. Considering that lactic acid bacteria (LAB) could act as a reservoir of transferable antibiotic resistance genes, LAB strains intended to be used as feed additives should be monitored for their safety. Sixty-five LAB strains which might be potentially used as probiotic feed additives or silage inoculants, were assessed for susceptibility to eight clinically relevant antimicrobials by a minimum inhibitory concentration determination. Among antimicrobial resistant strains, a prevalence of selected genes associated with the acquired resistance was investigated. Nineteen LAB strains displayed phenotypic resistance to one antibiotic, and 15 strains were resistant to more than one of the tested antibiotics. The resistance to aminoglycosides and tetracyclines were the most prevalent and were found in 37 and 26% of the studied strains, respectively. Phenotypic resistance to other antimicrobials was found in single strains. Determinants related to resistance phenotypes were detected in 15 strains as follows, the aph(3″)-IIIa gene in 9 strains, the lnu(A) gene in three strains, the str(A)-str(B), erm(B), msr(C), and tet(M) genes in two strains and the tet(K) gene in one strain. The nucleotide sequences of the detected genes revealed homology to the sequences of the transmissible resistance genes found in lactic acid bacteria as well as pathogenic bacteria. Our study highlights that LAB may be a reservoir of antimicrobial resistance determinants, thus, the first and key step in considering the usefulness of LAB strains as feed additives should be an assessment of their antibiotic resistance. This safety criterion should always precede more complex studies, such as an assessment of adaptability of a strain or its beneficial effect on a host. These results would help in the selection of the best LAB strains for use as feed additives. Importantly, presented data can be useful for revising the current microbiological cut-off values within the genus Lactobacillus and Pediococcus.


2020 ◽  
Vol 38 (2) ◽  
pp. 70-88
Author(s):  
Jung-Whan Chon ◽  
Kun-Ho Seo ◽  
Dongryeoul Bae ◽  
Dongkwan Jeong ◽  
Kwang-Young Song

Author(s):  
Jinghui Yao ◽  
Jing Gao ◽  
Jianming Guo ◽  
Hengan Wang ◽  
En Zhang ◽  
...  

The consumption of cheese in China is increasing rapidly. Little is known about the microbiota, the presence of antibiotic-resistant bacteria, or the distribution of antibiotic resistance genes (ARGs) in commercially-produced cheeses sold in China. These are important criteria for evaluating quality and safety. Thus, this study assessed the metagenomics of fifteen types of cheese using 16S rRNA gene sequencing. Fourteen bacterial genera were detected. Lactococcus , Lactobacillus , and Streptococcus were dominant based on numbers of sequence reads. Multidrug-resistant lactic acid bacteria were isolated from most of the types of cheese. The isolates showed 100% and 91.7% resistance to streptomycin and sulfamethoxazole, respectively, and genes involved in acquired resistance to streptomycin ( strB) and sulfonamides ( sul2) were detected with high frequency. To analyze the distribution of ARGs in the cheeses in overall, 309 ARGs from eight categories of ARG and nine transposase genes were profiled. A total of 169 ARGs were detected in the 15 cheeses; their occurrence and abundance varied significantly between cheeses. Our study demonstrates that there is various diversity of the bacteria and ARGs in cheeses sold in China. The risks associated with multidrug resistance of dominant lactic acid bacteria are of great concern.


2014 ◽  
Vol 9 (6) ◽  
pp. 296-302 ◽  
Author(s):  
Elham M. El Sayed ◽  
Sanaa M. Badran ◽  
Ahmed M. Hamed

2019 ◽  
Vol 1 ◽  
pp. 100006 ◽  
Author(s):  
Kaidi Wang ◽  
Hongwei Zhang ◽  
Jinsong Feng ◽  
Luyao Ma ◽  
César de la Fuente-Núñez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document