The Nitrogen Fixation Cistrons of Klebsiella Pneumoniae

Author(s):  
Christina Kennedy ◽  
Ray Dixon
1968 ◽  
Vol 14 (1) ◽  
pp. 33-38 ◽  
Author(s):  
M. C. Mahl ◽  
P. W. Wilson

A cell-free system which permits nitrogen fixation by extracts of Klebsiella pneumoniae M5al (formerly Aerobacter aerogenes) has been developed. It is, essentially, that system described by Bulen and associates for Azotobacter vinelandii, utilizing ATP as a source of energy and dithionite as a source of electrons. The Michaelis constant for fixation has been estimated to be 0.12 atm. The extracts possessed an ATP-dependent hydrogen evolving system. Hydrogen evolution from these extracts was less under nitrogen than under helium in the presence of ATP. Nitrogen gas appears to be the inducer of nitrogen fixation. In the absence of N2, no induction of nitrogenase occurs. Nitrogenase is absent in cells grown on NH4+-N. There is a lag of about 13 h after the introduction of N2 gas into a culture which has depleted its supply of NH4+-N before nitrogenase can be detected. For reasons discussed in the text, this conclusion must be regarded as tentative at this time. Ammonium ion appears to prevent the synthesis of new molecules of nitrogenase without affecting the activity of those already formed.


1981 ◽  
Vol 27 (1) ◽  
pp. 52-56 ◽  
Author(s):  
L. V. Wood ◽  
R. V. Klucas ◽  
R. C. Shearman

Turfs of 'Park' Kentucky bluegrass reestablished in the greenhouse and inoculated with Klebsiella pneumoniae (W6) showed significantly increased nitrogen fixation (acetylene reduction) compared with control turfs. Mean ethylene production rates per pot were 368 nmol h−1 for K. pneumoniae treated turfs, 55 nmol h−1 for heat-killed K. pneumoniae treated turfs, and 44 nmol h−1 for untreated turfs. Calculated lag periods before activity was observed were generally very short (less than 1 h).When 'Park' Kentucky bluegrass was grown from seed on soil-less medium of Turface, a fired aggregate clay, inoculation with K. pneumoniae (W6) resulted in 9 of 11 turfs showing nitrogenase activity (mean ethylene producion rate per pot was 195 nmol h−1). Only 3 of 11 turfs treated with heat-killed K. pneumoniae showed any activity and their mean rate of ethylene production (40 nmol h−1 per pot) was significantly lower than that for turfs treated with K. pneumoniae.Using the 'Park'–Turface soil-less model system it was shown that acetylene reducing activity was (i) root associated, (ii) generally highest at a depth of 1–4 cm below the surface, (iii) enhanced by washing excised roots, and (iv) inhibited by surface sterilization of excised roots. Klebsiella pneumoniae was recovered from Turface and roots showing acetylene reducing activity.


1977 ◽  
Vol 30 (2) ◽  
pp. 141 ◽  
Author(s):  
Mary L Skotnicki ◽  
Barry G Rolfe

Storage in dimethyl sulphoxide (DMSO) of Escherichia coli K12 hybrids carrying nif+ genes from Klebsiella pneumoniae can result in selection of a defective nitrogen-fixing phenotype. Similar results are obtained with E. coli K12 hybrids containing the nitrogep-fixing capacity from Rhizobium trifolii. DMSO appears to affect particular inner membrane proteins associated with energy metabolism in E. coli K12 and four chromosomal regions (chID, chlG, his and unc) are associated with resistance to DMSO.


1974 ◽  
pp. 211-229 ◽  
Author(s):  
STANLEY L. STREICHER ◽  
RAYMOND C. VALENTINE

Gene ◽  
1983 ◽  
Vol 22 (2-3) ◽  
pp. 295 ◽  
Author(s):  
W. Klipp ◽  
A. Pühler

Nature ◽  
1980 ◽  
Vol 286 (5769) ◽  
pp. 128-132 ◽  
Author(s):  
Ray Dixon ◽  
Robert R. Eady ◽  
Guadalupe Espin ◽  
Susan Hill ◽  
Maurizio Iaccarino ◽  
...  

The enzyme responsible for N 2 fixation, nitrogenase, is only found in prokaryotes. It consists of two metalloproteins, both irreversibly destroyed by exposure to the O 2 of air. The MoFe-protein binds N 2 and the Fe-protein, after activation by MgATP, supplies electrons. H 2 is evolved during the reduction of N 2 to NH 3 and can become the sole reaction in the absence of N 2 ; valuable information has been obtained by exploiting the ability of nitrogenase to reduce substrates such as acetylene, azides and cyanides. Substrate quantities of MgATP are required for all such reactions. The sensitivity of nitrogenase to oxygen is an important physiological constraint on its use and distribution; the ATP requirement and metal contents are less serious constraints. O 2 and NH 3 regulate synthesis and sometimes function of nitrogenase. Nitrogen fixation by Klebsiella pneumoniae is genetically encoded by 17 genes (the nif genes) in a cluster of seven or eight operons. The functions of several of these genes are known and the outlines of their regulation can be discerned. The nif cluster can be transferred to new prokaryotic genera, sometimes yielding new diazotrophic strains or species; they have been transferred to yeast and are silent. They have been cloned and alien DNA ( lac ) has been fused into nif Transfer of expressible nif to new genetic backgrounds has probably occurred in Nature and may be exploitable for agriculture.


Sign in / Sign up

Export Citation Format

Share Document