Quantitative Aspects of Image Intensifier- Television-Based Digital X-Ray Imaging

1986 ◽  
pp. 83-132 ◽  
Author(s):  
O. Nalcioglu ◽  
W. W. Roeck ◽  
J. A. Seibert ◽  
A. V. Lando ◽  
J. M. Tobis ◽  
...  
2019 ◽  
Vol 14 (0) ◽  
pp. 1402128-1402128
Author(s):  
Canbin HUANG ◽  
Kazuaki HANADA ◽  
Kengoh KURODA ◽  
Shinichro KOJIMA ◽  
Hiroaki FUJIYOSHI ◽  
...  

2021 ◽  
Vol 253 ◽  
pp. 06005
Author(s):  
Christophe Journeau ◽  
Michael Johnson ◽  
Shifali Singh ◽  
Fréderic Payot ◽  
Ken-ichi Matsuba ◽  
...  

During a severe accident in either sodium-cooled or water-cooled nuclear reactors, jets of molten nuclear fuel may impinge on the coolant resulting in fuel-coolant interactions (FCI). Experimental programs are being conducted to study this phenomenology and to support the development of severe accident models. Due to the optical opacity of the test section walls, sodium coolant, and the apparent optical opacity of water in the presence of intense ebullition, high-speed X-ray imaging is the preferred technique for FCI visualization. The configuration of these X-ray imaging systems, whereby the test section is installed between a fan-beam X-ray source and a scintillator-image intensifier projecting an image in the visual spectrum onto a high-speed camera, entails certain imaging artefacts and uncertainties. The X-ray imaging configuration requires precise calibration to enable detailed quantitative characterization of the FCI. To this end, ‘phantom’ models have been fabricated using polyethylene, either steel or hafnia powder, and empty cavities to represent sodium, molten fuel and sodium vapor phases respectively. A checkerboard configuration of the phantom enables calibration and correction for lens distortion artefacts which magnify features towards the edge of the field of view. Polydisperse steel ball configurations enable precise determination of the lower limit of detection and the estimation of parallax errors which introduce uncertainty in an object’s silhouette dimensions. Calibration experiments at the MELT facility determined lower limits of detection in the order of 4 mm for steel spheres, and 1.7-3.75 mm for vapor films around a molten jet.


2013 ◽  
Vol 20 (3) ◽  
pp. 498-503 ◽  
Author(s):  
Sung Yong Jung ◽  
Han Wook Park ◽  
Bo Heum Kim ◽  
Sang Joon Lee

X-ray imaging is used to visualize the biofluid flow phenomena in a nondestructive manner. A technique currently used for quantitative visualization is X-ray particle image velocimetry (PIV). Although this technique provides a high spatial resolution (less than 10 µm), significant hemodynamic parameters are difficult to obtain under actual physiological conditions because of the limited temporal resolution of the technique, which in turn is due to the relatively long exposure time (∼10 ms) involved in X-ray imaging. This study combines an image intensifier with a high-speed camera to reduce exposure time, thereby improving temporal resolution. The image intensifier amplifies light flux by emitting secondary electrons in the micro-channel plate. The increased incident light flux greatly reduces the exposure time (below 200 µs). The proposed X-ray PIV system was applied to high-speed blood flows in a tube, and the velocity field information was successfully obtained. The time-resolved X-ray PIV system can be employed to investigate blood flows at beamlines with insufficient X-ray fluxes under specific physiological conditions. This method facilitates understanding of the basic hemodynamic characteristics and pathological mechanism of cardiovascular diseases.


1989 ◽  
Vol 60 (7) ◽  
pp. 2334-2334
Author(s):  
V. A. Karpenko ◽  
A. D. Khil’chenko ◽  
A. P. Lysenko ◽  
V. E. Panchenko

Author(s):  
M.G. Baldini ◽  
S. Morinaga ◽  
D. Minasian ◽  
R. Feder ◽  
D. Sayre ◽  
...  

Contact X-ray imaging is presently developing as an important imaging technique in cell biology. Our recent studies on human platelets have demonstrated that the cytoskeleton of these cells contains photondense structures which can preferentially be imaged by soft X-ray imaging. Our present research has dealt with platelet activation, i.e., the complex phenomena which precede platelet appregation and are associated with profound changes in platelet cytoskeleton. Human platelets suspended in plasma were used. Whole cell mounts were fixed and dehydrated, then exposed to a stationary source of soft X-rays as previously described. Developed replicas and respective grids were studied by scanning electron microscopy (SEM).


Author(s):  
James F. Mancuso ◽  
William B. Maxwell ◽  
Russell E. Camp ◽  
Mark H. Ellisman

The imaging requirements for 1000 line CCD camera systems include resolution, sensitivity, and field of view. In electronic camera systems these characteristics are determined primarily by the performance of the electro-optic interface. This component converts the electron image into a light image which is ultimately received by a camera sensor.Light production in the interface occurs when high energy electrons strike a phosphor or scintillator. Resolution is limited by electron scattering and absorption. For a constant resolution, more energy deposition occurs in denser phosphors (Figure 1). In this respect, high density x-ray phosphors such as Gd2O2S are better than ZnS based cathode ray tube phosphors. Scintillating fiber optics can be used instead of a discrete phosphor layer. The resolution of scintillating fiber optics that are used in x-ray imaging exceed 20 1p/mm and can be made very large. An example of a digital TEM image using a scintillating fiber optic plate is shown in Figure 2.


Author(s):  
Ann LeFurgey ◽  
Peter Ingram ◽  
J.J. Blum ◽  
M.C. Carney ◽  
L.A. Hawkey ◽  
...  

Subcellular compartments commonly identified and analyzed by high resolution electron probe x-ray microanalysis (EPXMA) include mitochondria, cytoplasm and endoplasmic or sarcoplasmic reticulum. These organelles and cell regions are of primary importance in regulation of cell ionic homeostasis. Correlative structural-functional studies, based on the static probe method of EPXMA combined with biochemical and electrophysiological techniques, have focused on the role of these organelles, for example, in maintaining cell calcium homeostasis or in control of excitation-contraction coupling. New methods of real time quantitative x-ray imaging permit simultaneous examination of multiple cell compartments, especially those areas for which both membrane transport properties and element content are less well defined, e.g. nuclei including euchromatin and heterochromatin, lysosomes, mucous granules, storage vacuoles, microvilli. Investigations currently in progress have examined the role of Zn-containing polyphosphate vacuoles in the metabolism of Leishmania major, the distribution of Na, K, S and other elements during anoxia in kidney cell nuclel and lysosomes; the content and distribution of S and Ca in mucous granules of cystic fibrosis (CF) nasal epithelia; the uptake of cationic probes by mltochondria in cultured heart ceils; and the junctional sarcoplasmic retlculum (JSR) in frog skeletal muscle.


Author(s):  
Jean-Claude Jésior ◽  
Roger Vuong ◽  
Henri Chanzy

Starch is arranged in a crystalline manner within its storage granules and should thus give sharp X-ray diagrams. Unfortunately most of the common starch granules have sizes between 1 and 100μm, making them too small for an X-ray study on individual grains. There is only one instance where an oriented X-ray diagram could be obtained on one sector of an individual giant starch granule. Despite their small size, starch granules are still too thick to be studied by electron diffraction with a transmission electron microscope. The only reported study on starch ultrastructure using electron diffraction on frozen hydrated material was made on small fragments. The present study has been realized on thin sectioned granules previously litnerized to improve the signal to noise ratio.Potato starch was hydrolyzed for 10 days in 2.2N HCl at 35°C, dialyzed against water until neutrality and embedded in Nanoplast. Sectioning was achieved with a commercially available low-angle “35°” diamond knife (Diatome) after a very carefull trimming and a pre-sectioning with a classical “45°” diamond knife. Sections obtained at a final sectioning angle of 42.2° (compared with the usual 55-60°) and at a nominal thickness of 900Å were collected on a Formvar-carbon coated grid. The exact location of the starch granules in their sections was recorded by optical microscopy on a Zeiss Universal polarizing microscope (Fig. 1a). After rehydration at a relative humidity of 95% for 24 hours they were mounted on a Philips cryoholder and quench frozen in liquid nitrogen before being inserted under frozen conditions in a Philips EM 400T electron microscope equipped with a Gatan anticontaminator and a Lhesa image intensifier.


Sign in / Sign up

Export Citation Format

Share Document