Carbon-14 Fat Oxidation Test: A New Method of Measuring Fat Utilization in the Human

1965 ◽  
pp. 293-302 ◽  
Author(s):  
Susanne L. von Schuching ◽  
Arthur F. Abt
2014 ◽  
Vol 20 (0) ◽  
pp. 90 ◽  
Author(s):  
Priit Purge ◽  
Priit Lehismets ◽  
Jaak Jürimäe

1995 ◽  
Vol 4 (2) ◽  
pp. 45-57
Author(s):  
Lauree M. Grubbs

Women, considering swimming as a form of exercise to lose weight, have been discouraged from doing so, since researchers suggest that swimming does not burn fat as efficiently as land exercise. The purpose of this study was to compare carbohydrate and fat utilization by women engaging in two different forms of exercise, walking and swimming, at the same intensity and duration. Subjects were 20 moderately trained female subjects, walkers (W) = 10 and swimmers (S) = 10; ages 18-40 years. Measurements of blood free fatty acids (FFA), glycerol, lactate, glucose, free fatty acid turnover (FFAT), respiratory quotient (RQ), and fat oxidation were made during 60 minutes of walking or swimming at the same exercise intensity. Multivariate analysis of variance determined no significant differences between groups in net energy expenditure (NEE), RQ, fat oxidation, blood FFA, glycerol, glucose, and FFAT(p > .05). There was a significant difference between groups in blood lactic acid levels (p < .01). Since it was found that swimming and walking at the same duration and intensity bum similar amounts of fat and carbohydrate as energy sources during exercise, women may find swimming to be a viable form of exercise for weight control.


Lipids ◽  
2008 ◽  
Vol 43 (6) ◽  
pp. 517-524 ◽  
Author(s):  
Masanobu Hibi ◽  
Hideto Takase ◽  
Koichi Yasunaga ◽  
Tohru Yamaguchi ◽  
Ushio Harada ◽  
...  

1996 ◽  
Vol 81 (5) ◽  
pp. 2182-2191 ◽  
Author(s):  
S. M. Phillips ◽  
H. J. Green ◽  
M. A. Tarnopolsky ◽  
G. J. F. Heigenhauser ◽  
R. E. Hill ◽  
...  

Phillips, S. M., H. J. Green, M. A. Tarnopolsky, G. J. F. Heigenhauser, R. E. Hill, and S. M. Grant. Effects of training duration on substrate turnover and oxidation during exercise. J. Appl. Physiol. 81(5): 2182–2191, 1996.—Adaptations in fat and carbohydrate metabolism after a prolonged endurance training program were examined using stable isotope tracers of glucose ([6,6-2H2]glucose), glycerol ([2H5]glycerol), and palmitate ([2H2]palmitate). Active, but untrained, males exercised on a cycle for 2 h/day [60% pretraining peak O2consumption (V˙o 2 peak) = 44.3 ± 2.4 ml ⋅ kg−1 ⋅ min−1] for a total of 31 days. Three cycle tests (90 min at 60% pretrainingV˙o 2 peak) were administered before training (PRE) and after 5 (5D) and 31 (31D) days of training. Exercise increased the rate of glucose production (Ra) and utilization (Rd) as well as the rate of lipolysis (glycerol Ra) and free fatty acid turnover (FFA Ra/Rd). At 5D, training induced a 10% ( P < 0.05) increase in total fat oxidation because of an increase in intramuscular triglyceride oxidation (+63%, P < 0.05) and a decreased glycogen oxidation (−16%, P < 0.05). At 31D, total fat oxidation during exercise increased a further 58% ( P < 0.01). The pattern of fat utilization during exercise at 31D showed a reduced reliance on plasma FFA oxidation (FFA Rd) and a greater dependence on oxidation of intramuscular triglyceride, which increased more than twofold ( P < 0.001). In addition, glucose Raand Rd were reduced at all time points during exercise at 31D compared with PRE and 5D. We conclude that long-term training induces a progressive increase in fat utilization mediated by a greater oxidation of fats from intramuscular sources and a reduction in glucose oxidation. Initial changes are present as early as 5D and occur before increases in muscle maximal mitochondrial enzyme activity [S. M. Phillips, H. J. Green, M. A. Tarnopolsky, G. J. F. Heigenhauser, and S. M. Grant. Am. J. Physiol. 270 ( Endocrinol. Metab. 33): E265–E272, 1996].


Nutrients ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 233
Author(s):  
Carlos Ruiz-Moreno ◽  
Juan Del Coso ◽  
Verónica Giráldez-Costas ◽  
Jaime González-García ◽  
Jorge Gutiérrez-Hellín

The p-synephrine is the principal phytochemical found in bitter orange (Citrus aurantium). This substance is widely included in dietary supplements for weight loss/body fat reduction due to its potential benefits of increasing fat oxidation. For years, p-synephrine-containing dietary supplements have been marketed without proper knowledge of their true effectiveness to enhance fat utilization, especially when combined with exercise. However, the effects of p-synephrine on fat oxidation during exercise have been investigated in the last few years. The aim of the current discussion is to summarize the evidence on the effects of p-synephrine intake on fat oxidation and performance during exercise. Previous investigations have demonstrated that the acute intake of p-synephrine does not modify running sprint performance, jumping capacity, or aerobic capacity. However, the acute intake of p-synephrine, in a dose of 2–3 mg/kg of body mass, has been effective to enhance the rate of fat oxidation during incremental and continuous exercise. This effect has been observed in a range of exercise workloads between 30% and 80% of peak oxygen uptake (VO2peak). The p-synephrine has the ability to increase the maximal rate of fat oxidation during exercise of increasing intensity without affecting the workload at which maximal fat oxidation is obtained (Fatmax). The effect of p-synephrine on fat oxidation is normally accompanied by a concomitant reduction of carbohydrate utilization during exercise, without modifying the energy expended during exercise. The shifting in substrate oxidation is obtained without any effect on heart rate during exercise and the prevalence of adverse effects is negligible. Thus, the acute use of p-synephrine, or p-synephrine-containing products, might offer some benefits for those individuals seeking higher fat utilization during exercise at low to moderate intensities. However, more research is still necessary to determine if the effect of p-synephrine on fat oxidation during exercise is maintained with chronic ingestion, in order to ascertain the utility of this substance in conjunction with exercise programs to produce an effective body fat/weight loss reduction.


2017 ◽  
Vol 42 (4) ◽  
pp. 339-346 ◽  
Author(s):  
Hashim Islam ◽  
Logan K. Townsend ◽  
Tom J. Hazell

Adaptations to sprint interval training (SIT) are observed with brief (≤15-s) work bouts highlighting peak power generation as an important metabolic stimulus. This study examined the effects of manipulating SIT work bout and recovery period duration on energy expenditure (EE) during and postexercise, as well as postexercise fat oxidation rates. Nine active males completed a resting control session (CTRL) and 3 SIT sessions in randomized order: (i) 30:240 (4 × 30-s bouts, 240-s recovery); (ii) 15:120 (8 × 15-s bouts, 120-s recovery); (3) 5:40 (24 × 5-s bouts, 40-s recovery). Protocols were matched for the total duration of work (2 min) and recovery (16 min), as well as the work-to-recovery ratio (1:8 s). EE and fat oxidation rates were derived from gas exchange measured before, during, and for 3 h postexercise. All protocols increased EE versus CTRL (P < 0.001). Exercise EE was greater (P < 0.001) with 5:40 (209 kcal) versus both 15:120 (163 kcal) and 30:240 (138 kcal), while 15:120 was also greater (P < 0.001) than 30:240. Postexercise EE was greater (P = 0.014) with 15:120 (313 kcal) versus 5:40 (294 kcal), though both were similar (P > 0.077) to 30:240 (309 kcal). Postexercise fat oxidation was similar (P = 0.650) after 15:120 (0.104 g·min−1) and 30:240 (0.116 g·min−1) and both were greater (P < 0.030) than 5:40 (0.072 g·min−1) and CTRL (0.049 g·min−1). In conclusion, shorter SIT work bouts that target peak power generation increase exercise EE without compromising postexercise EE, though longer bouts promote greater postexercise fat utilization.


2017 ◽  
Vol 42 (3) ◽  
pp. 304-310
Author(s):  
Terje Gjovaag ◽  
Peyman Mirtaheri ◽  
Inger Marie Starholm

Background: Studies suggest that the energy expenditure of healthy persons (control) during walking with the preferred walking speed in steady-state conditions is dominated by fat oxidation. Conversely, carbohydrate and fat oxidation during walking is little investigated in transfemoral amputees. Objectives: To investigate carbohydrate and fat oxidation, energy cost of walking, and percent utilization of maximal aerobic capacity [Formula: see text]during walking. Study design: Eight transfemoral amputees and controls walked with their preferred walking speed and speeds 12.5% and 25% slower and faster than their preferred walking speed. Methods: Energy expenditure and fuel utilization were measured using a portable metabolic analyzer. Metabolic values are means ± standard deviation. Results: For transfemoral amputees (37.0 ± 10.9 years) and controls (39.0 ± 12.3 years), fat utilization at the preferred walking speed was 44.8% ± 7.2% and 45.0% ± 7.2% of the total energy expenditure, respectively. The preferred walking speed of the transfemoral amputees and controls was close to a metabolic cross-over speed, which is the speed where carbohydrate utilization increases steeply and fat utilization decreases. When walking fast, at 90 m min−1 (preferred walking speed plus 25%), transfemoral amputees utilized 70.7% ± 5.6% of their [Formula: see text], while the controls utilized 30.9% ± 4.5% ( p < 0.001) at the matching speed (control preferred walking speed). At 90 m min−1, carbohydrate utilization was 78% ± 4.7% and 55.2% ± 7.2% of the total energy expenditure for the transfemoral amputees and controls, respectively ( p < 0.01). Compared to the control, energy cost of walking was higher for the transfemoral amputees at all speeds (all comparisons; p < 0.001). Conclusion: At the preferred walking speed, carbohydrate, not fat, dominates energy expenditure of both transfemoral amputees and controls. For the transfemoral amputees, consequences of fast walking are very high [Formula: see text] utilization and rate of carbohydrate oxidation. Clinical relevance Research on the relationships between physical effort and fuel partitioning during ambulation could provide important insights for exercise-rehabilitation programs for lower limb amputees (LLA). Regular endurance exercise will improve maximal aerobic capacity and enable LLA to walk faster and at the same time expend less energy and improve fat utilization.


Radiocarbon ◽  
2017 ◽  
Vol 60 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Masataka Hakozaki ◽  
Fusa Miyake ◽  
Toshio Nakamura ◽  
Katsuhiko Kimura ◽  
Kimiaki Masuda ◽  
...  

AbstractThe so-called Millennium Eruption of Baitoushan Volcano is one of the largest of the Common Era but its date has been uncertain. Recently, Oppenheimer et al. (2017) reported the eruptive year as late AD 946 using a new method called carbon-14 spike matching. However, it is necessary to verify their result to confirm the eruptive year, since only one wood sample was used in their study. We verified the eruptive year by measuring 14C contents in tree rings from another wood sample buried during the Baitoushan eruption. We succeeded in reproducing the AD 774–775 14C spike (Miyake et al. 2012), and counted the number of rings from the outermost ring accompanied by bark to the ring possessing the AD 774–775 14C spike. We found the outermost ring was formed in AD 946. Our study supported the result of Oppenheimer et al. (2017), which makes the eruptive year conclusive. Also, we suggest that the 14C spike-matching method can be a prominent dating tool applicable to ancient woods that are difficult to date using the usual dendrochronology techniques.


1980 ◽  
Vol 45 (2) ◽  
pp. 290-297 ◽  
Author(s):  
L. A. Pavlish ◽  
E. B. Banning

The conventional carbon-14 method relies on the accurate measurement of a beta-ray decay rate to determine the age of the sample. The new method instead uses an ultrasensitive mass spectrometer to count the individual carbon-14 atoms in a sample. The advantages of this approach are many. The problem of cosmic ray background does not arise. Shorter counting times on samples 1,000 times smaller will be possible. One result will be the production of more accurate age determinations. The new method will permit a great expansion in the types of archaeological materials that can be dated because only milligram samples will be required. Research on the design of a dedicated carbon-14 atom counting machine is presently in progress.


Sign in / Sign up

Export Citation Format

Share Document