New Genetic Tools for Rhodobacter capsulatus and Structure and Expression of Genes for Carotenoid Biosynthesis

Author(s):  
Glenn E. Bartley ◽  
Pablo A. Scolnik
2007 ◽  
Vol 189 (21) ◽  
pp. 7765-7773 ◽  
Author(s):  
Jonathan Willett ◽  
James L. Smart ◽  
Carl E. Bauer

ABSTRACT We provide in vivo genetic and in vitro biochemical evidence that RegA directly regulates bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus. β-Galactosidase expression assays with a RegA-disrupted strain containing reporter plasmids for Mg-protoporphyrin IX monomethyl ester oxidative cyclase (bchE), Mg-protoporphyrin IX chelatase (bchD), and phytoene dehydrogenase (crtI) demonstrate RegA is responsible for fourfold anaerobic induction of bchE, threefold induction of bchD, and twofold induction of crtI. Promoter mapping studies, coupled with DNase I protection assays, map the region of RegA binding to three sites in the bchE promoter region. Similar studies at the crtA and crtI promoters indicate that RegA binds to a single region equidistant from these divergent promoters. These results demonstrate that RegA is directly responsible for anaerobic induction of bacteriochlorophyll biosynthesis genes bchE, bchD, bchJ, bchI, bchG, and bchP and carotenoid biosynthesis genes crtI, crtB, and crtA.


2011 ◽  
Vol 136 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Carl E. Sams ◽  
Dilip R. Panthee ◽  
Craig S. Charron ◽  
Dean A. Kopsell ◽  
Joshua S. Yuan

Glucosinolates (GSs) and carotenoids are important plant secondary metabolites present in several plant species, including arabidopsis (Arabidopsis thaliana). Although genotypic and environmental regulation of GSs and carotenoid compounds has been reported, few studies present data on their regulation at the molecular level. Therefore, the objective of this study was to explore differential expression of genes associated with GSs and carotenoids in arabidopsis in response to selenium fertilization, shown previously to impact accumulations of both classes of metabolites in Brassica species. Arabidopsis was grown under 0.0 or 10.0 μM Na2SeO4 in hydroponic culture. Shoot and root tissue samples were collected before anthesis to measure GSs and carotenoid compounds and conduct gene expression analysis. Gene expression was determined using arabidopsis oligonucleotide chips containing more than 31,000 genes. There were 1274 differentially expressed genes in response to selenium (Se), of which 516 genes were upregulated. Ontology analysis partitioned differentially expressed genes into 20 classes. Biosynthesis pathway analysis using AraCyc revealed that four GSs, one carotenoid, and one chlorophyll biosynthesis pathways were invoked by the differentially expressed genes. Involvement of the same gene in more than one biosynthesis pathway indicated that the same enzyme may be involved in multiple GS biosynthesis pathways. The decrease in carotenoid biosynthesis under Se treatment occurred through the downregulation of phytoene synthase at the beginning of the carotenoid biosynthesis pathway. These findings may be useful to modify the GS and carotenoid levels in arabidopsis and may lead to modification in agriculturally important plant species.


1988 ◽  
Vol 213 (1) ◽  
pp. 78-83 ◽  
Author(s):  
Giovanni Giuliano ◽  
Daniel Pollock ◽  
Henry Stapp ◽  
Pablo A. Scolnik

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e2834 ◽  
Author(s):  
Ah-Young Shin ◽  
Yong-Min Kim ◽  
Namjin Koo ◽  
Su Min Lee ◽  
Seokhyeon Nahm ◽  
...  

BackgroundThe oriental melon (Cucumis meloL. var.makuwa) is one of the most important cultivated cucurbits grown widely in Korea, Japan, and northern China. It is cultivated because its fruit has a sweet aromatic flavor and is rich in soluble sugars, organic acids, minerals, and vitamins. In order to elucidate the genetic and molecular basis of the developmental changes that determine size, color, and sugar contents of the fruit, we performedde novotranscriptome sequencing to analyze the genes expressed during fruit development.ResultsWe identified a total of 47,666 of representative loci from 100,875 transcripts and functionally annotated 33,963 of the loci based on orthologs inArabidopsis thaliana. Among those loci, we identified 5,173 differentially expressed genes, which were classified into 14 clusters base on the modulation of their expression patterns. The expression patterns suggested that the differentially expressed genes were related to fruit development and maturation through diverse metabolic pathways. Analyses based on gene set enrichment and the pathways described in the Kyoto Encyclopedia of Genes and Genomes suggested that the expression of genes involved in starch and sucrose metabolism and carotenoid biosynthesis were regulated dynamically during fruit development and subsequent maturation.ConclusionOur results provide the gene expression patterns related to different stages of fruit development and maturation in the oriental melon. The expression patterns give clues about important regulatory mechanisms, especially those involving starch, sugar, and carotenoid biosynthesis, in the development of the oriental melon fruit.


Sign in / Sign up

Export Citation Format

Share Document