A Mathematical Analysis of Kinetics of Consecutive, Competitive Reactions of Protein Amino Groups

Author(s):  
Mendel Friedman ◽  
L. David Williams
2006 ◽  
Vol 71 (4) ◽  
pp. 567-578 ◽  
Author(s):  
Alicja Stachelska ◽  
Zbigniew J. Wieczorek ◽  
Janusz Stępiński ◽  
Marzena Jankowska-Anyszka ◽  
Harri Lönnberg ◽  
...  

Second-order rate constants for the hydroxide-ion-catalyzed imidazolium ring-opening of several mono- and dinucleosidic analogs of mRNA 5'-cap have been determined. Intramolecular stacking of the two nucleobases in the dinucleosidic analogs, m7GpppN (m7G = 7-methylguanosine, N = 5'-linked nucleoside), and electrostatic interaction between the N-alkylated imidazolium ring and phosphate moiety have been shown to shield the m7G moiety against the nucleophilic attack of hydroxide ion. In addition, the effect of methylation of the nucleobase amino groups and replacement of the 7-methyl group with other alkyl groups have been studied. The influence of all the structural modifications studied turned out to be modest, the cleavage rates of the most and least reactive analogs (with the exception of non-phosphorylated nucleosides) differing only by a factor of 5.


1991 ◽  
Vol 238 ◽  
Author(s):  
G. J. Shiflet

ABSTRACTStresses are introduced in crystals at interphase boundaries where steps improve the registry of atoms. A model and mathematical analysis based on an approach previously taken by van der Merwe and Shiflet1–4 of the problem incorporating a coherent step are presented. Computed distributions of stresses, strains, dilatation and energy density in the form of contours and nets are given for a coherent monatomic step. It is concluded that the maximum stresses are quite large and the fields decay fairly rapidly with distance from the steps, the gradient of dilatation around steps will significantly affect diffusion kinetics of impurities and the strain energy seems too low to significantly enhance chemical processes.


Author(s):  
lon Ganescu ◽  
George Bratulescu ◽  
Ion Papa ◽  
Anca Ganescu ◽  
Alin Barbu ◽  
...  

Salvation kinetics of [Cr(NCS)4(imidazole)2]- has been studied in ethanol-water mixtures at different temperatures. The first stage of the solvation consists of two competitive reactions: two NCS- ions are exchanged, presumably, by water molecules and simultaneously an imidazole molecule by ethanol, the latter in a second-order reaction, accelerated by hydrogen ions. The exchange of the amine is followed by the substitution of the first two NCS- ions. The third and fourth NCS- ions are substituted only in neutral and slightly acidic solutions. Kinetic parameters have been determined for reactions (1), (2), and (4). The influence of the solvent composition and acidity is discussed


1997 ◽  
Vol 82 (2) ◽  
pp. 167-169 ◽  
Author(s):  
Sergei I. Vdovenko ◽  
Igor I. Gerus ◽  
Marina G. Gorbunova

1984 ◽  
Vol 30 (1) ◽  
pp. 24-27 ◽  
Author(s):  
L Mason ◽  
C Weinkove

Abstract The kinetics of enzymatic O-methylation of catecholamines were studied under conditions like those used in the radioenzymatic assay of plasma catecholamines. Inappropriate Michaelis-Menten kinetics and linear approximations of exponential equations were not used. Mathematical analysis indicated the importance of the ratio of methyl donor (S-adenosylmethionine) to substrate (catecholamine) concentration. If the reaction is incomplete, only a large ratio will allow linear approximations between product formed and initial catecholamine concentration. The use of high-concentration internal standards to correct for plasma interference may give erroneous results by reducing this ratio. Accuracy will be improved by ensuring (a) that S-adenosylmethionine is always greatly in excess of catecholamine, (b) that concentrations of added standards are of the same order as for endogenous catecholamine, and (c) that a high activity of enzyme is used, to allow the reaction to reach completion even in the presence of some inhibition.


2010 ◽  
Vol 61 (5) ◽  
pp. 1221-1226 ◽  
Author(s):  
J. Criquet ◽  
P. Nebout ◽  
N. Karpel Vel Leitner

The aim of this work was to investigate the generation of sulfate radical for the removal of two carboxylic acids in aqueous solution: acetic and citric acids. From photochemical and radiolytic processes, kinetics of the degradation of these two carboxylic acids was studied as a function of the pH of the solution. It was shown that the maximum of acetic acid degradation occurred at pH 5. Above this pH, competitive reactions with the carbon mineralized inhibit the reaction of with the solute. In the case of citric acid, pH has only a little effect on the kinetic of citric acid degradation. The determination of mineralization yields shows several differences depending on carboxylic acids and pH. The degradation of both carboxylic acids was also studied in the radiolysis process whether with or without persulfate addition. A comparison of the processes of sulfate radical production is presented.


2016 ◽  
Vol 12 ◽  
pp. 245-252
Author(s):  
Helmut Ritter ◽  
Monir Tabatabai ◽  
Markus Herrmann

We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by 1H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by 1H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.


1972 ◽  
Vol 50 (12) ◽  
pp. 1282-1296 ◽  
Author(s):  
A. Kurosky ◽  
T. Hofmann

The kinetics of the reaction of nitrous acid at 4° and pH 4.0 with various amino acids, peptides, and proteins were studied. The reaction with isoleucine methyl ester was found to have a linear dependence on the square of the HONO concentration showing that N2O3 was the reactive species. Third order nitrosation rate constants of primary amino groups showed a correlation with their pK values. They were calculated for the concentration of the unprotonated species to give intrinsic reactivities. The rate of nitrosation of acetyltryptophan to give N-nitrosoacetyltryptophan was found to be a linear function of the nitrous acid concentration. This nitrosation therefore follows a different mechanism. The reaction of nitrous acid with tyrosine residues was examined by spectrophotometry. The reaction was negligible compared to that of other groups. Acetylhistidine and imidazole did not react. Reactivities for α-amino groups, ε-amino groups, and other residues in proteins were compared. The conformational state of the N-terminal residues in serine proteinases, as revealed from their reactivities, is discussed in detail. It is concluded that nitrous acid reacts preferentially with "surface" residues and is a useful tool for exploring conformational states of reactive groups in proteins, especially α-amino groups and indole rings.


Sign in / Sign up

Export Citation Format

Share Document