Commercialization of Nucleic Acid Probe Technology: Current Status

Author(s):  
James H. Godsey ◽  
Kurt M. Vanden Brink ◽  
Luke J. DiMichele ◽  
Laura A. Beninsig ◽  
W. Richard Peterson ◽  
...  
Keyword(s):  
Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 5002
Author(s):  
Yoji Yamada

Nucleic acid drugs are being developed as novel therapeutic modalities. They have great potential to treat human diseases such as cancers, viral infections, and genetic disorders due to unique characteristics that make it possible to approach undruggable targets using classical small molecule or protein/antibody-based biologics. In this review, I describe the advantages, classification, and clinical status of nucleic acid therapeutics. To date, more than 10 products have been launched, and many products have been tested in clinics. To promote the use of nucleic acid therapeutics such as antibodies, several hurdles need to be surmounted. The most important issue is the delivery of nucleic acids and several other challenges have been reported. Recent advanced delivery platforms are lipid nanoparticles and ligand conjugation approaches. With the progress of exosome biology, exosomes are expected to contribute to the solution of various problems associated with nucleic acid drugs.


2020 ◽  
Vol 8 (Spl-1-SARS-CoV-2) ◽  
pp. S246-S263
Author(s):  
Bharti Kotarya ◽  
◽  
Abhishek Pandeya ◽  
Raj Kumar Khalko ◽  
Anup Mishra ◽  
...  

Severe Acute Respiratory Syndrome Corona Virus -2 (SARS-CoV-2), puzzled the whole world with its diverse, unique clinical spectrum, and unprecedented transmission dynamics. The disease caused by this virus is named as Coronavirus disease-19 (COVID-19), reported first time in Wuhan, China, in December 2019. It had spread to almost all countries of the world disrupting the health and economy of many countries. It was the recent zoonotic spillover disease reported in humans from the Coronavirus group, without proper medicine and non-existence of prior immunity, this disease posed a challenge to both the scientific and medical fraternity. The search for safe, effective drugs to treat the disease and vaccines against the causative agent SARS- CoV-2 had begun all over the world with public and private partnerships. Many countries are part of the solidarity trail for identifying the effective drugs, clinical trials and vaccines for this global pandemic. Here in this review, we are focussing on the different vaccine production platforms being used in the preparation of vaccines against SARS-CoV-2, their current status and prospects. Vaccine production technology significantly advanced in recent times by imbibing the cutting edge technologies such as nucleic acid based technologies such as DNA/RNA/Codon deoptimization and availability of safe and effective viral vectors produced through rDNA technology. The availability of complete genome sequence of SARS-CoV-2, geared up for the production of vaccine candidates based on these new vaccine production platforms, and in a record time of 4-5 months, these vaccine candidates entered in human clinical trials for the evaluation of safety and efficacy. Prior knowledge on SARS and MERS-CoV’s structural and genomic features, vaccine production platforms used in making vaccines against them greatly augmented in the SARS-CoV-2 vaccine efforts. As per World Health Organization (WHO) a total of202 vaccine candidates are under developing for SARS-CoV-2, among them 47 entered in clinical trials and 156 are in the preclinical stage. These vaccines are prepared by an amalgamation of both new and old traditional vaccine production platforms such as nucleic acid base platforms, inactivated, live attenuated, recombinant viral vectors, protein and peptide-based vaccines. The success of these vaccine candidates lies in the generation of effective immune response for SARS-CoV-2 across all age groups and people with co-morbidities. We briefly summarize the different strategies of SARS-CoV-2 vaccine production and their prospects with an emphasis on different routes of administration and added a basic mathematical model depicting the importance of vaccination for any pandemic.


Author(s):  
Jonathan P. Wong ◽  
Mary E. Christopher ◽  
Murray Cairns ◽  
L.-Q. Sun ◽  
Roderic M. K. Dale ◽  
...  

1979 ◽  
Vol 63 (3) ◽  
pp. 583-592 ◽  
Author(s):  
Thomas S. Chen ◽  
George F. Zaki ◽  
Carroll M. Leevy

2014 ◽  
Vol 9 (11) ◽  
pp. 1363-1364
Author(s):  
Tristan Montier ◽  
Chantal Pichon ◽  
Marc Blondel ◽  
Patrick Midoux
Keyword(s):  

Biosensors ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 117 ◽  
Author(s):  
Faye M. Walker ◽  
Kuangwen Hsieh

Advances in nucleic acid amplification technologies have revolutionized diagnostics for systemic, inherited, and infectious diseases. Current assays and platforms, however, often require lengthy experimental procedures and multiple instruments to remove contaminants and inhibitors from clinically-relevant, complex samples. This requirement of sample preparation has been a bottleneck for using nucleic acid amplification tests (NAATs) at the point of care (POC), though advances in “lab-on-chip” platforms that integrate sample preparation and NAATs have made great strides in this space. Alternatively, direct NAATs—techniques that minimize or even bypass sample preparation—present promising strategies for developing POC diagnostic tools for analyzing real-world samples. In this review, we discuss the current status of direct NAATs. Specifically, we surveyed potential testing systems published from 1989 to 2017, and analyzed their performances in terms of robustness, sensitivity, clinical relevance, and suitability for POC diagnostics. We introduce bubble plots to facilitate our analysis, as bubble plots enable effective visualization of the performances of these direct NAATs. Through our review, we hope to initiate an in-depth examination of direct NAATs and their potential for realizing POC diagnostics, and ultimately transformative technologies that can further enhance healthcare.


Author(s):  
H. J. Tanke ◽  
J. Vrolijk ◽  
A. K. Raap

In situ hybridization allows the detection of specific nucleic acid sequences in morphologically intact cells and chromosomes. Presently, fluorescence in situ hybridization (FISH) has reached a high detection sensitivity (defined as the smallest DNA target detectable, high DNA resolution (defined as the smallest distance in kilobasepairs between two DNA targets that can be resolved microscopically and a high multiplicity (defined as the number of different probes that can be identified simultaneously. The current status of FISH methodology:*several direct and indirect nucleic acid modifications*sensitivity: unique DNA sequences 1-5 kb*DNA resolution: metaphase ~ > 1-3 Mbp (light microscopy) interphase ~50 kbp DNA halos ~ 1 kbp*multiplicity: at least 12Progress in in situ hybridization and related technology has caused molecular cytogenetics to become an established. In particular the ability of ISH techniques to detect chromosomes and/or chromosome parts in interphase nuclei (interphase cytogenetics) has significantly contributed to this acceptance of ISH, since this technique provides statistically reliable means to study the genetic composition of cells that can not, or only by complicated techniques, be brought in mitosis.


Sign in / Sign up

Export Citation Format

Share Document