CNS Transplants and the Host Immune Response: The Blood-Brain Barrier and Immunological Privilege within the Mammalian Brain

Author(s):  
Richard D. Broadwell ◽  
Belinda J. Baker ◽  
William F. Hickey
2017 ◽  
Vol 89 (1) ◽  
pp. 42-52 ◽  
Author(s):  
Jonathan I Spencer ◽  
Jack S Bell ◽  
Gabriele C DeLuca

Blood-brain barrier (BBB) disruption has long been recognised as an important early feature of multiple sclerosis (MS) pathology. Traditionally, this has been seen as a by-product of the myelin-specific immune response. Here, we consider whether vascular changes instead play a central role in disease pathogenesis, rather than representing a secondary effect of neuroinflammation or neurodegeneration. Importantly, this is not necessarily mutually exclusive from current hypotheses. Vascular pathology in a genetically predisposed individual, influenced by environmental factors such as pathogens, hypovitaminosis D and smoking, may be a critical initiator of a series of events including hypoxia, protein deposition and immune cell egress that allows the development of a CNS-specific immune response and the classical pathological and clinical hallmarks of disease. We review the changes that occur in BBB function and cerebral perfusion in patients with MS and highlight genetic and environmental risk factors that, in addition to modulating immune function, may also converge to act on the vasculature. Further context is provided by contrasting these changes with other neurological diseases in which there is also BBB malfunction, and highlighting current disease-modifying therapies that may also have an effect on the BBB. Indeed, in reframing current evidence in this model, the vasculature could become an important therapeutic target in MS.


2017 ◽  
Vol 117 ◽  
pp. 182-194 ◽  
Author(s):  
Kerstin Römermann ◽  
Maren Fedrowitz ◽  
Philip Hampel ◽  
Edith Kaczmarek ◽  
Kathrin Töllner ◽  
...  

2018 ◽  
Vol 24 (12) ◽  
pp. 1115-1128 ◽  
Author(s):  
Yan Li ◽  
Zi‐Yu Zhu ◽  
Ting‐Ting Huang ◽  
Yu‐Xi Zhou ◽  
Xin Wang ◽  
...  

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Anna Galstyan ◽  
Janet L. Markman ◽  
Ekaterina S. Shatalova ◽  
Antonella Chiechi ◽  
Alan J. Korman ◽  
...  

AbstractBrain glioma treatment with checkpoint inhibitor antibodies to cytotoxic T-lymphocyte-associated antigen 4 (a-CTLA-4) and programmed cell death-1 (a-PD-1) was largely unsuccessful due to their inability to cross blood–brain barrier (BBB). Here we describe targeted nanoscale immunoconjugates (NICs) on natural biopolymer scaffold, poly(β-L-malic acid), with covalently attached a-CTLA-4 or a-PD-1 for systemic delivery across the BBB and activation of local brain anti-tumor immune response. NIC treatment of mice bearing intracranial GL261 glioblastoma (GBM) results in an increase of CD8+ T cells, NK cells and macrophages with a decrease of regulatory T cells (Tregs) in the brain tumor area. Survival of GBM-bearing mice treated with NIC combination is significantly longer compared to animals treated with single checkpoint inhibitor-bearing NICs or free a-CTLA-4 and a-PD-1. Our study demonstrates trans-BBB delivery of tumor-targeted polymer-conjugated checkpoint inhibitors as an effective GBM treatment via activation of both systemic and local privileged brain tumor immune response.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 327
Author(s):  
Matthias Behrens ◽  
Sabine Hüwel ◽  
Hans-Joachim Galla ◽  
Hans-Ulrich Humpf

Recent studies have implied that environmental toxins, such as mycotoxins, are risk factors for neurodegenerative diseases. To act directly as neurotoxins, mycotoxins need to penetrate or affect the integrity of the blood-brain barrier, which protects the mammalian brain from potentially harmful substances. As common food and feed contaminants of fungal origin, the interest in the potential neurotoxicity of ochratoxin A, citrinin and their metabolites has recently increased. Primary porcine brain capillary endothelial cells were used to investigate cytotoxic or barrier-weakening effects of ochratoxin A, ochratoxin α, citrinin and dihydrocitrinone. The transfer and transport properties of the mycotoxins across the barrier formed by porcine brain capillary endothelial cell monolayers were analysed using HPLC-MS/MS. High levels of Ochratoxin A caused cytotoxic and barrier-weakening effects, whereas ochratoxin α, citrinin and dihydrocitrinone showed no adverse effects up to 10 µM. Likely due to efflux transporter proteins, the transfer to the brain compartment was much slower than expected from their high lipophilicity. Due to their slow transfer across the blood-brain barrier, cerebral exposure of ochratoxin A, ochratoxin α, citrinin and dihydrocitrinone is low and neurotoxicity is likely to play a subordinate role in their toxicity at common physiological concentrations.


2018 ◽  
Author(s):  
Anna Galstyan ◽  
Antonella Chiechi ◽  
Alan J. Korman ◽  
Tao Sun ◽  
Liron L. Israel ◽  
...  

AbstractTreatment of brain gliomas with checkpoint inhibitor antibodies to cytotoxic T-lymphocyte-associated antigen 4 (a-CTLA-4) and programmed cell death-1 (a-PD-1) was largely unsuccessful due to their inability to cross the blood-brain barrier (BBB). We describe a new generation of nano immunoconjugates (NICs) developed on natural biopolymer scaffold, poly(β-L-malic acid), with covalently attached a-CTLA-4 and/or a-PD-1 for delivery across the BBB and activation of local brain anti-tumor immune response in glioma-bearing mice. NIC treatment of mice bearing intracranial GL261 glioblastoma (GBM) resulted in an increase of CD8+ T-cells with a decrease of T regulatory cells (Tregs) in the brain tumor area. Survival of GBM-bearing mice treated with combination of NICs was significantly longer compared to animals treated by single checkpoint inhibitor-bearing NICs or free a-CTLA-4 and a-PD-1. Our study demonstrates trans-BBB delivery of nanopolymer-conjugated checkpoint inhibitors as an effective treatment of GBM via activation of both systemic and local brain tumor immune response.


Sign in / Sign up

Export Citation Format

Share Document