Time Dependent Quantum Mechanics with Correlated Coherent States

Author(s):  
Brian Weiner
1994 ◽  
Vol 08 (29) ◽  
pp. 1823-1831 ◽  
Author(s):  
SALVATORE DE MARTINO ◽  
SILVIO DE SIENA ◽  
FABRIZIO ILLUMINATI

In the framework of the stochastic formulation of quantum mechanics we derive non-stationary states for a class of time-dependent potentials. The wave packets follow a classical motion with constant dispersion. The new states define a possible extension of the harmonic oscillator coherent states. As an explicit application, we study a sestic oscillator potential.


2004 ◽  
Vol 18 (16) ◽  
pp. 2307-2324 ◽  
Author(s):  
JEONG RYEOL CHOI

We obtained the uncertainty relation in squeezed states for a time-dependent oscillator. The uncertainty relation in coherent states is same as that of the number states with n=0. However, the uncertainty relation in squeezed states does not satisfy this property and depends on squeezing parameter c. For instance, the uncertainty relation is ℏ/2 which is the minimum value as far as quantum mechanics permits for c=1, same as that in coherent state for c=±∞, and infinity for c=-1. If the time-dependency of the Hamiltonian for the system vanishes, the uncertainty relation in squeezed states will no longer depend on c and becomes the same as that in number state with n=0, like the uncertainty relation in coherent states.


2005 ◽  
Vol 340 (1-4) ◽  
pp. 87-93 ◽  
Author(s):  
Paolo Amore ◽  
Alfredo Aranda ◽  
Francisco M. Fernández ◽  
Hugh Jones

2021 ◽  
Author(s):  
Kaushal R Purohit ◽  
Rajendrasinh H PARMAR ◽  
Ajay Kumar Rai

Abstract Using the Qiang-Dong proper quantization rule (PQR) and the supersymmetric quantum mechanics approach, we obtained the eigenspectrum of the energy and momentum for time independent and time dependent Hulthen-screened cosine Kratzer potentials. For the suggested time independent Hulthen-screened cosine Kratzer potential, we solved the Schrodinger equation in D dimensions (HSCKP). The Feinberg-Horodecki equation for time-dependent Hulthen-screened cosine Kratzer potential was also solved (tHSCKP). To address the inverse square term in the time independent and time dependent equations, we employed the Greene-Aldrich approximation approach. We were able to extract time independent and time dependent potentials, as well as their accompanying energy and momentum spectra. In three-dimensional space, we estimated the rotational vibrational (RV) energy spectrum for many homodimers ($H_2, I_2, O_2$) and heterodimers ($MnH, ScN, LiH, HCl$). We also used the recently introduced formula approach to obtain the relevant eigen function. We also calculated momentum spectra for the dimers $MnH$ and $ScN$. The method is compared to prior methodologies for accuracy and validity using numerical data for heterodimer $LiH, HCl$ and homodimer $I_2, O_2,H_2$. The calculated energy and momentum spectra are tabulated and analysed.


Author(s):  
Jean Vignon Hounguevou ◽  
Daniel Sabi Takou ◽  
Gabriel Y. H. Avossevou

In this paper, we study coherent states for a quantum Pauli model through supersymmetric quantum mechanics (SUSYQM) method. From the point of view of canonical quantization, the construction of these coherent states is based on the very important differential operators in SUSYQM call factorization operators. The connection between classical and quantum theory is given by using the geometric properties of these states.


Sign in / Sign up

Export Citation Format

Share Document