Rfam: Annotating Families of Non-Coding RNA Sequences

Author(s):  
Jennifer Daub ◽  
Ruth Y. Eberhardt ◽  
John G. Tate ◽  
Sarah W. Burge
Keyword(s):  
2011 ◽  
Vol 152 (16) ◽  
pp. 633-641 ◽  
Author(s):  
Katalin Gőcze ◽  
Katalin Gombos ◽  
Gábor Pajkos ◽  
Ingrid Magda ◽  
Ágoston Ember ◽  
...  

Cancer research concerning short non-coding RNA sequences and functionally linked to RNA interference (RNAi) have reached explosive breakthrough in the past decade. Molecular technology applies microRNA in extremely wide spectrum from molecular tumor prediction, diagnostics, progression monitoring and prevention. Functional analysis of tissue miRNA and cell-free serum miRNA in posttranscription and translation regulation innovated and restructured the knowledge on the field. This review focuses on molecular epidemiology and primary prevention aspects of the small non-coding RNA sequences. Orv. Hetil., 2011, 152, 633–641.


2020 ◽  
Vol 17 (166) ◽  
pp. 20190784 ◽  
Author(s):  
Marcel Weiß ◽  
Sebastian E. Ahnert

In genotype–phenotype (GP) maps, the genotypes that map to the same phenotype are usually not randomly distributed across the space of genotypes, but instead are predominantly connected through one-point mutations, forming network components that are commonly referred to as neutral components (NCs). Because of their impact on evolutionary processes, the characteristics of these NCs, like their size or robustness, have been studied extensively. Here, we introduce a framework that allows the estimation of NC size and robustness in the GP map of RNA secondary structure. The advantage of this framework is that it only requires small samples of genotypes and their local environment, which also allows experimental realizations. We verify our framework by applying it to the exhaustively analysable GP map of RNA sequence length L = 15, and benchmark it against an existing method by applying it to longer, naturally occurring functional non-coding RNA sequences. Although it is specific to the RNA secondary structure GP map in the first place, our framework can probably be transferred and adapted to other sequence-to-structure GP maps.


2007 ◽  
Vol 35 (Database) ◽  
pp. D145-D148 ◽  
Author(s):  
T. Kin ◽  
K. Yamada ◽  
G. Terai ◽  
H. Okida ◽  
Y. Yoshinari ◽  
...  

Author(s):  
Debarshi Roy ◽  
Ramesh Bandla ◽  
Praveen Boddana ◽  
Rajesh Medisetty ◽  
Raghu Gogada

MiRNAs are 20-22 nucleotide long single-stranded non-coding RNA sequences, which can regulate post transcriptional activity of mRNA by binding with it at 3’UTR region (untranslated region). Thus deregulation of miRNA expression is responsible for dysregulating mRNA function which contributes in developing various diseases as well as cancerous phenotypes. Alteration of single nucleotide in miRNA sequence is one of the reasons behind deregulation of miRNA expression. The most frequent carcinoma in current day is breast cancer which causes a high mortality among women around the world as well as India. Despite of the advancement of diagnostic tools, strategies and treatment, the cases of breast cancer is increasing every year. There are plenty of biomarkers like ER, PR, Her2, Ki-67, etc available which are frequently used in diagnosis and treatment of breast cancer. After the discovery of MiRNA in 1993 in Caenorhabiditis elegans, it is attracting all the limelight in diagnosis and treatment of different carcinomas as well as breast cancer. In this review we will discuss on involvement of different types of MiRNAs and miR SNPs in breast cancer occurrence and susceptibility in a detailed manner.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8640 ◽  
Author(s):  
Junhe Hu ◽  
Tao Tang ◽  
Zhi Zeng ◽  
Juan Wu ◽  
Xiansheng Tan ◽  
...  

Polycystic ovary syndrome (PCOS) can cause reproductive disorders that may affect oocyte quality from punctured follicles in human follicular fluid (HFF). The non-coding RNA family includes micro RNA (miRNA), piwi-interacting RNA (piRNA) and transfer RNA (tRNA); these non-coding RNA transcripts play diverse functions and are implicated in a variety of diseases and health conditions, including infertility. In this study, to explore the role of HFF exosomes in PCOS, we extracted and sequenced RNA from HFF exosomes of PCOS patients and compared the analysis results with those of non-PCOS control group. The HFF exosomes were successfully isolated and characterized in a variety of ways. The sequencing results of the HFF exosomal RNA showed that about 6.6% of valid reads in the PCOS group and 8.6% in the non-PCOS group were successfully mapped to the human RNA database. Using a hierarchical clustering method, we found there were ten small RNA sequences whose expression was significantly different between the PCOS and non-PCOS groups. We chose six of them to predict target genes of interest for further GO analysis, and pathway analysis showed that the target genes are mainly involved in biosynthesis of amino acids, glycine, serine and glycosaminoglycan, as well as threonine metabolism. Therefore, the small RNA sequences contained in HFF EXs may play a key role in the mechanism that drives PCOS pathogenesis, and thereby can act as molecular biomarkers for PCOS diagnosis in the future.


2018 ◽  
Vol 10 (4) ◽  
pp. 5192
Author(s):  
N. Saranya ◽  
A. Kandavelmani ◽  
L. T. Saravanan ◽  
S. Shanmugapriya ◽  
M. Jayakanthan ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Dandan Zong ◽  
Xiangming Liu ◽  
Jinhua Li ◽  
Ruoyun Ouyang ◽  
Ping Chen

Abstract Background Exposure to cigarette smoke (CS) is a major threat to human health worldwide. It is well established that smoking increases the risk of respiratory diseases, cardiovascular diseases and different forms of cancer, including lung, liver, and colon. CS-triggered inflammation is considered to play a central role in various pathologies by a mechanism that stimulates the release of pro-inflammatory cytokines. During this process, epigenetic alterations are known to play important roles in the specificity and duration of gene transcription. Main text Epigenetic alterations include three major modifications: DNA modifications via methylation; various posttranslational modifications of histones, namely, methylation, acetylation, phosphorylation, and ubiquitination; and non-coding RNA sequences. These modifications work in concert to regulate gene transcription in a heritable fashion. The enzymes that regulate these epigenetic modifications can be activated by smoking, which further mediates the expression of multiple inflammatory genes. In this review, we summarize the current knowledge on the epigenetic alterations triggered by CS and assess how such alterations may affect smoking-mediated inflammatory responses. Conclusion The recognition of the molecular mechanisms of the epigenetic changes in abnormal inflammation is expected to contribute to the understanding of the pathophysiology of CS-related diseases such that novel epigenetic therapies may be identified in the near future.


2018 ◽  
Vol 47 (D1) ◽  
pp. D221-D229 ◽  
Author(s):  
◽  
Blake A Sweeney ◽  
Anton I Petrov ◽  
Boris Burkov ◽  
Robert D Finn ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document