Immunocytochemical Detection of Intraneuronal Aβ Peptides in Mouse Models of Alzheimer’s Disease

Author(s):  
Oliver Wirths ◽  
Anika Saul
2004 ◽  
Vol 25 ◽  
pp. S11
Author(s):  
Thomas A. Bayer ◽  
Oliver Wirths ◽  
Caty Casas ◽  
Patrick Benoit ◽  
Christoph Schmitz ◽  
...  

2021 ◽  
Vol 13 ◽  
Author(s):  
Sathish Kumar ◽  
Akshay Kapadia ◽  
Sandra Theil ◽  
Pranav Joshi ◽  
Florian Riffel ◽  
...  

Aggregation and deposition of amyloid-β (Aβ) peptides in extracellular plaques and in the cerebral vasculature are prominent neuropathological features of Alzheimer’s disease (AD) and closely associated with the pathogenesis of AD. Amyloid plaques in the brains of most AD patients and transgenic mouse models exhibit heterogeneity in the composition of Aβ deposits, due to the occurrence of elongated, truncated, and post-translationally modified Aβ peptides. Importantly, changes in the deposition of these different Aβ variants are associated with the clinical disease progression and considered to mark sequential phases of plaque and cerebral amyloid angiopathy (CAA) maturation at distinct stages of AD. We recently showed that Aβ phosphorylated at serine residue 26 (pSer26Aβ) has peculiar characteristics in aggregation, deposition, and neurotoxicity. In the current study, we developed and thoroughly validated novel monoclonal and polyclonal antibodies that recognize Aβ depending on the phosphorylation-state of Ser26. Our results demonstrate that selected phosphorylation state-specific antibodies were able to recognize Ser26 phosphorylated and non-phosphorylated Aβ with high specificity in enzyme-linked immunosorbent assay (ELISA) and Western Blotting (WB) assays. Furthermore, immunofluorescence analyses with these antibodies demonstrated the occurrence of pSer26Aβ in transgenic mouse brains that show differential deposition as compared to non-phosphorylated Aβ (npAβ) or other modified Aβ species. Notably, pSer26Aβ species were faintly detected in extracellular Aβ plaques but most prominently found intraneuronally and in cerebral blood vessels. In conclusion, we developed new antibodies to specifically differentiate Aβ peptides depending on the phosphorylation state of Ser26, which are applicable in ELISA, WB, and immunofluorescence staining of mouse brain tissues. These site- and phosphorylation state-specific Aβ antibodies represent novel tools to examine phosphorylated Aβ species to further understand and dissect the complexity in the age-related and spatio-temporal deposition of different Aβ variants in transgenic mouse models and human AD brains.


2018 ◽  
Vol 15 (13) ◽  
pp. 1191-1212 ◽  
Author(s):  
Botond Penke ◽  
Gábor Paragi ◽  
János Gera ◽  
Róbert Berkecz ◽  
Zsolt Kovács ◽  
...  

Lipids participate in Amyloid Precursor Protein (APP) trafficking and processing - important factors in the initiation of Alzheimer’s disease (AD) pathogenesis and influence the formation of neurotoxic β-amyloid (Aβ) peptides. An important risk factor, the presence of ApoE4 protein in AD brain cells binds the lipids to AD. In addition, lipid signaling pathways have a crucial role in the cellular homeostasis and depend on specific protein-lipid interactions. The current review focuses on pathological alterations of membrane lipids (cholesterol, glycerophospholipids, sphingolipids) and lipid metabolism in AD and provides insight in the current understanding of biological membranes, their lipid structures and functions, as well as their role as potential therapeutic targets. Novel methods for studying the membrane structure and lipid composition will be reviewed in a broad sense whereas the use of lipid biomarkers for early diagnosis of AD will be shortly summarized. Interactions of Aβ peptides with the cell membrane and different subcellular organelles are reviewed. Next, the details of the most important lipid signaling pathways, including the role of the plasma membrane as stress sensor and its therapeutic applications are given. 4-hydroxy-2-nonenal may play a special role in the initiation of the pathogenesis of AD and thus the “calpain-cathepsin hypothesis” of AD is highlighted. Finally, the most important lipid dietary factors and their possible use and efficacy in the prevention of AD are discussed.


2004 ◽  
Vol 25 ◽  
pp. S444
Author(s):  
Gunnar K. Gouras ◽  
Claudia G. Almeida ◽  
Davide Tampellini ◽  
Reisuke H. Takahashi

Author(s):  
Satoshi Muraoka ◽  
Mark P. Jedrychowski ◽  
Naotoshi Iwahara ◽  
Mohammad Abdullah ◽  
Kristen D. Onos ◽  
...  

2013 ◽  
Vol 106 ◽  
pp. 57-67 ◽  
Author(s):  
Chun-Ming Wang ◽  
Ming-Yan Liu ◽  
Fang Wang ◽  
Min-Jie Wei ◽  
Shuang Wang ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 815
Author(s):  
Malena dos Santos Guilherme ◽  
Vu Thu Thuy Nguyen ◽  
Christoph Reinhardt ◽  
Kristina Endres

The gut brain axis seems to modulate various psychiatric and neurological disorders such as Alzheimer’s disease (AD). Growing evidence has led to the assumption that the gut microbiome might contribute to or even present the nucleus of origin for these diseases. In this regard, modifiers of the microbial composition might provide attractive new therapeutics. Aim of our study was to elucidate the effect of a rigorously changed gut microbiome on pathological hallmarks of AD. 5xFAD model mice were treated by antibiotics or probiotics (L. acidophilus and L. rhamnosus) for 14 weeks. Pathogenesis was measured by nest building capability and plaque deposition. The gut microbiome was affected as expected: antibiotics significantly reduced viable commensals, while probiotics transiently increased Lactobacillaceae. Nesting score, however, was only improved in antibiotics-treated mice. These animals additionally displayed reduced plaque load in the hippocampus. While various physiological parameters were not affected, blood sugar was reduced and serum glucagon level significantly elevated in the antibiotics-treated animals together with a reduction in the receptor for advanced glycation end products RAGE—the inward transporter of Aβ peptides of the brain. Assumedly, the beneficial effect of the antibiotics was based on their anti-diabetic potential.


2015 ◽  
Vol 17 (26) ◽  
pp. 16886-16893 ◽  
Author(s):  
Xu Wang ◽  
Xianqiang Sun ◽  
Guanglin Kuang ◽  
Hans Ågren ◽  
Yaoquan Tu

The investigation of the (ZAβ3)2:Aβ complex highlights the energetic contribution of affibody residues to the binding with alzheimer's disease associated Aβ peptides.


Sign in / Sign up

Export Citation Format

Share Document