Fluorescent Reporters for Ubiquitin-Dependent Proteolysis in Plants

Author(s):  
Katarzyna Zientara-Rytter ◽  
Agnieszka Sirko
2019 ◽  
Vol 476 (22) ◽  
pp. 3521-3532
Author(s):  
Eric Soubeyrand ◽  
Megan Kelly ◽  
Shea A. Keene ◽  
Ann C. Bernert ◽  
Scott Latimer ◽  
...  

Plants have evolved the ability to derive the benzenoid moiety of the respiratory cofactor and antioxidant, ubiquinone (coenzyme Q), either from the β-oxidative metabolism of p-coumarate or from the peroxidative cleavage of kaempferol. Here, isotopic feeding assays, gene co-expression analysis and reverse genetics identified Arabidopsis 4-COUMARATE-COA LIGASE 8 (4-CL8; At5g38120) as a contributor to the β-oxidation of p-coumarate for ubiquinone biosynthesis. The enzyme is part of the same clade (V) of acyl-activating enzymes than At4g19010, a p-coumarate CoA ligase known to play a central role in the conversion of p-coumarate into 4-hydroxybenzoate. A 4-cl8 T-DNA knockout displayed a 20% decrease in ubiquinone content compared with wild-type plants, while 4-CL8 overexpression boosted ubiquinone content up to 150% of the control level. Similarly, the isotopic enrichment of ubiquinone's ring was decreased by 28% in the 4-cl8 knockout as compared with wild-type controls when Phe-[Ring-13C6] was fed to the plants. This metabolic blockage could be bypassed via the exogenous supply of 4-hydroxybenzoate, the product of p-coumarate β-oxidation. Arabidopsis 4-CL8 displays a canonical peroxisomal targeting sequence type 1, and confocal microscopy experiments using fused fluorescent reporters demonstrated that this enzyme is imported into peroxisomes. Time course feeding assays using Phe-[Ring-13C6] in a series of Arabidopsis single and double knockouts blocked in the β-oxidative metabolism of p-coumarate (4-cl8; at4g19010; at4g19010 × 4-cl8), flavonol biosynthesis (flavanone-3-hydroxylase), or both (at4g19010 × flavanone-3-hydroxylase) indicated that continuous high light treatments (500 µE m−2 s−1; 24 h) markedly stimulated the de novo biosynthesis of ubiquinone independently of kaempferol catabolism.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jinli Gong ◽  
Zhen Tian ◽  
Xiaolu Qu ◽  
Qiunan Meng ◽  
Yajie Guan ◽  
...  

AbstractAlthough multiple microscopic techniques have been applied to horticultural research, few studies of individual organelles in living fruit cells have been reported to date. In this paper, we established an efficient system for the transient transformation of citrus fruits using an Agrobacterium-mediated method. Kumquat (Fortunella crassifolia Swingle) was used; it exhibits higher transformation efficiency than all citrus fruits that have been tested and a prolonged-expression window. Fruits were transformed with fluorescent reporters, and confocal microscopy and live-cell imaging were used to study their localization and dynamics. Moreover, various pH sensors targeting different subcellular compartments were expressed, and the local pH environments in cells from different plant tissues were compared. The results indicated that vacuoles are most likely the main organelles that contribute to the low pH of citrus fruits. In summary, our method is effective for studying various membrane trafficking events, protein localization, and cell physiology in fruit and can provide new insight into fruit biology research.


TECHNOLOGY ◽  
2016 ◽  
Vol 04 (03) ◽  
pp. 174-193 ◽  
Author(s):  
Esteban Roberts ◽  
Thomas Jacob ◽  
Karl Garsha ◽  
Damien Ramunno-Johnson ◽  
Franklin Ventura ◽  
...  

Aberrant cellular signaling networks are implicated in major diseases including cancer, but are difficult to reliably quantitate, as many signaling proteins are expressed at low abundance and further reduced following specimen collection. MTIP is an integrated tissue-imaging platform that leverages bright, fluorescent reporters and sensitive spectral instrumentation, along with automated staining, image acquisition and non-parametric image analysis, to attain reproducible, multiplexed quantitation of signaling proteins in tissue. MTIP captured the phosphoactivity of six key PI3K/MAPK proteins (pAKTS473, pAKT308, pPRAS40, pS6, peIF4G and pERK1/2) at high precision (coefficient of variation, CV <10%), four-log dynamic range and subcellular resolution. We demonstrated the MTIP platform's capability to capture a diversity of PI3K/MAPK networks present in breast tumors. These protein networks are heterogeneously distributed across the tumor tissue and associated with subgroups of cells and underscore the importance of accessing information about signaling networks in spatially intact tissue. Analysis of PI3K/MAPK networks by hierarchical clustering showed that PI3K/MAPK networks do not strictly correlate with PI3K pathway mutations, also pointing to the value of functional signaling network profiling together with genomic information. MTIP's reliable quantitative capability can be applied to guide therapeutic development and selection in precision medicine.


2021 ◽  
Author(s):  
Nolan W Kennedy ◽  
Carolyn E Mills ◽  
Charlotte H Abrahamson ◽  
Andre Archer ◽  
Michael C Jewett ◽  
...  

Bacterial microcompartments (MCPs) are protein-based organelles that house the enzymatic machinery for metabolism of niche carbon sources, allowing enteric pathogens to outcompete native microbiota during host colonization. While much progress has been made toward understanding MCP biogenesis, questions still remain regarding the mechanism by which core MCP enzymes are enveloped within the MCP protein shell. Here we explore the hypothesis that the shell protein PduB is responsible for linking the shell of the 1,2-propanediol utilization (Pdu) MCP from Salmonella enterica serovar Typhimurium LT2 to its enzymatic core. Using fluorescent reporters, we demonstrate that all members of the Pdu enzymatic core are encapsulated in Pdu MCPs. We also demonstrate that PduB is the sole protein responsible for linking the entire Pdu enzyme core to the MCP shell. Using MCP purifications, transmission electron microscopy, and fluorescence microscopy we find that shell assembly can be decoupled from the enzymatic core, as apparently empty MCPs are formed in Salmonella strains lacking PduB. Mutagenesis studies also reveal that PduB is incorporated into the Pdu MCP shell via a conserved, lysine-mediated hydrogen bonding mechanism. Finally, growth assays and systems-level pathway modeling reveal that unencapsulated pathway performance is strongly impacted by enzyme concentration, highlighting the importance of minimizing polar effects when conducting these functional assays. Together, these results provide insight into the mechanism of enzyme encapsulation within Pdu MCPs and demonstrate that the process of enzyme encapsulation and shell assembly are separate processes in this system, a finding that will aid future efforts to understand MCP biogenesis.


2021 ◽  
Author(s):  
◽  
Tim Niklas Baldering

Die Kommunikation von Zellen mit ihrer Umgebung wird durch Rezeptorproteine arrangiert, die sich in der Plasmamembran befinden. Membranrezeptoren werden durch die Bindung von extrazellulären Liganden, Pathogenen oder Zell-Zell-Interaktionen aktiviert, wodurch die Bildung eines aktiven Zustands gefördert wird, der eine intrazelluläre Reaktion einleitet. Eine Beschreibung auf molekularer Ebene, wie sich Membranrezeptoren in Proteinanordnungen organisieren und wie diese Proteinanordnungen eine spezifische funktionelle Aufgabe ausführen, ist der Ausgangspunkt für das Verständnis der molekularen Mechanismen, die Gesundheit und Krankheit zugrunde liegen. Die Fluoreszenzmikroskopie gibt Aufschluss über die Lage von Proteinen in Zellen, und mit der Einführung der höchstauflösenden Mikroskopie wurde der Nachweis einzelner Proteingruppierungen möglich. Eine Einschränkung der meisten Methoden der höchstauflösenden Mikroskopie ist, dass einzelne Komponenten einer Proteingruppierung optisch nicht aufgelöst werden können, was an der geringen Größe und dichten Packung der Bestandteile im Vergleich zur erreichbaren räumlichen Auflösung liegt. Eine Lösung, die für Einzelmolekül-Lokalisierungsmethoden gezeigt wurde, besteht darin, zusätzliche experimentelle Informationen in die Analyse zu implementieren, also „die Aufl sungsgrenze der höchstauflösenden Mikroskopie zu umgehen". Bei der Einzelmolekül-Bildgebung kann diese zusätzliche Information zum Beispiel die Kinetik von mehrfachen und wiederkehrenden Emissionsereignissen sein, die bei einzelnen Fluorophoren beobachtet werden, was als "Blinken" bezeichnet wird. Das Ziel dieser Arbeit war die Entwicklung einer höchstauflösenden Fluoreszenzmikroskopiemethode zur Detektion von Proteinmonomeren und -dimeren in der Plasmamembran von Zellen durch die Verwendung der kinetischen Information. Im ersten Teil dieser Arbeit wurden photoschaltbare fluoreszierende Proteine als Reporter verwendet, deren photoschaltbare Kinetik mit kinetischen Gleichungen analysiert wurden. Synthetische, genetische und zelluläre Referenzproteine wurden konstruiert und dienten als Kalibrierungsreferenzen für monomere und dimere Proteine. Im zweiten Teil dieser Arbeit wurde das kinetische Modell, das zur Annäherung des Häufigkeitshistogramms von Blinkereignissen einzelner Fluorophore verwendet wird, auf Oligomere höherer Ordnung erweitert. Ein Vergleich mit einem zuvor entwickelten Modell zeigte, dass das erweiterte Modell genauere Ergebnisse für Oligomere höherer Ordnung und Mischungen verschiedener Oligomere liefert. Zusätzlich wird die Anwesenheit von unerkannten Oligomeren berücksichtigt. Die erweiterte Theorie bietet somit die Grundlage, um größere Oligomere und Mischungen unterschiedlicher Stöchiometrie mit besserer Genauigkeit zu untersuchen. Im dritten Teil dieser Arbeit wurde eine Methode zur stöchiometrischen endogenen Markierung von Proteinen verwendet, um zwei Rezeptortyrosinkinasen, MET und EGFR, mit einem photoschaltbaren fluoreszierenden Protein zu markieren. Das Vorkommen von monomerem und dimerem MET-Rezeptor wurde auf der Plasmamembran von HEK293T- Zellen mittels quantitativer höchstauflösender Mikroskopie bestimmt. Der Diffusionskoeffizient und der Diffusionsmodus des MET-Rezeptors in lebenden HEK293T-Zellen wurden mit Einzelpartikelverfolgung gemessen. Dieser Teil der Arbeit zeigte, dass die Kombination von CRISPR/Cas12a-gestützter endogener Markierung und Einzelmolekül-Lokalisierungsmikroskopie ein leistungsfähiges Werkzeug zur Untersuchung der molekularen Organisation und Dynamik von Membranproteinen ist. Im vierten Teil dieser Arbeit wurde die Einzelmoleküldatenanalyse durch ein Softwaretool beschleunigt, das eine automatisierte und unvoreingenommene Detektion von Einzelmolekül-Emissionsereignissen ermöglicht. Der Anteil von Monomeren und Dimeren von fluoreszierenden Reportern wurde durch die Implementierung eines neuronalen Netzwerks bestimmt (die Software wurde von Alon Saguy geschrieben; Gruppe von Prof. Yoav Shechtman, Technion, Israel). Der oligomere Zustand der monomeren und dimeren Referenzproteine CD86 und CTLA-4 wurde erfolgreich bestimmt. Die automatisierte Detektion einzelner Proteingruppierungen ermöglichte die Analyse von MET-mEos4b in einzelnen Zellen, wodurch die Heterogenität zwischen den Zellen bestimmt und das Expressionsniveau des Rezeptors mit der Dimerisierung korreliert werden konnte. Zusammenfassend wurden in dieser Arbeit Ergebnisse zu elementaren Aspekten hin zu einer molekularen Quantifizierung von Proteinzahlen mittels Einzelmolekül- Lokalisationsmikroskopie generiert, die fluoreszierende Reporter, stöchiometrische Markierung von zellulären Proteinen und Bildanalyse umfassen. Das Potential dieser Entwicklungen wurde anhand der Beobachtung der Liganden-induzierten Verschiebung von monomeren zu dimeren MET-Rezeptoren in einzelnen HEK293T-Zellen gezeigt.


2019 ◽  
Vol 47 (5) ◽  
pp. 1383-1392 ◽  
Author(s):  
Ying-Chi Chao ◽  
Nicoletta C. Surdo ◽  
Sergio Pantano ◽  
Manuela Zaccolo

Abstract 3′-5′-cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger that modulates multiple cellular functions. It is now well established that cAMP can mediate a plethora of functional effects via a complex system of local regulatory mechanisms that result in compartmentalized signalling. The use of fluorescent probes to monitor cAMP in intact, living cells have been instrumental in furthering our appreciation of this ancestral and ubiquitous pathway and unexpected details of the nano-architecture of the cAMP signalling network are starting to emerge. Recent evidence shows that sympathetic control of cardiac contraction and relaxation is achieved via generation of multiple, distinct pools of cAMP that lead to differential phosphorylation of target proteins localized only tens of nanometres apart. The specific local control at these nanodomains is enabled by a distinct signalosome where effectors, targets, and regulators of the cAMP signal are clustered. In this review, we focus on recent advances using targeted fluorescent reporters for cAMP and how they have contributed to our current understanding of nanodomain cAMP signalling in the heart. We briefly discuss how this information can be exploited to design novel therapies and we highlight some of the questions that remain unanswered.


2016 ◽  
Vol 4 (44) ◽  
pp. 7138-7145 ◽  
Author(s):  
Hirobumi Sunayama ◽  
Takeo Ohta ◽  
Atsushi Kuwahara ◽  
Toshifumi Takeuchi

An antibiotic-imprinted cavity with two different fluorescent dyes was prepared by molecular imprinting and subsequent post-imprinting modifications (PIMs), for the readout of a specific binding event as a fluorescence signal.


Sign in / Sign up

Export Citation Format

Share Document