CATH-Gene3D: Generation of the Resource and Its Use in Obtaining Structural and Functional Annotations for Protein Sequences

Author(s):  
Natalie L. Dawson ◽  
Ian Sillitoe ◽  
Jonathan G. Lees ◽  
Su Datt Lam ◽  
Christine A. Orengo
2020 ◽  
Vol 48 (W1) ◽  
pp. W77-W84 ◽  
Author(s):  
Patryk Jarnot ◽  
Joanna Ziemska-Legiecka ◽  
Laszlo Dobson ◽  
Matthew Merski ◽  
Pablo Mier ◽  
...  

Abstract Low complexity regions (LCRs) in protein sequences are characterized by a less diverse amino acid composition compared to typically observed sequence diversity. Recent studies have shown that LCRs may co-occur with intrinsically disordered regions, are highly conserved in many organisms, and often play important roles in protein functions and in diseases. In previous decades, several methods have been developed to identify regions with LCRs or amino acid bias, but most of them as stand-alone applications and currently there is no web-based tool which allows users to explore LCRs in protein sequences with additional functional annotations. We aim to fill this gap by providing PlaToLoCo - PLAtform of TOols for LOw COmplexity—a meta-server that integrates and collects the output of five different state-of-the-art tools for discovering LCRs and provides functional annotations such as domain detection, transmembrane segment prediction, and calculation of amino acid frequencies. In addition, the union or intersection of the results of the search on a query sequence can be obtained. By developing the PlaToLoCo meta-server, we provide the community with a fast and easily accessible tool for the analysis of LCRs with additional information included to aid the interpretation of the results. The PlaToLoCo platform is available at: http://platoloco.aei.polsl.pl/.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shizuka Koshimizu ◽  
Yukino Nakamura ◽  
Chikako Nishitani ◽  
Masaaki Kobayashi ◽  
Hajime Ohyanagi ◽  
...  

AbstractJapanese pear (Pyrus pyrifolia) is a major fruit tree in the family Rosaceae and is bred for fruit production. To promote the development of breeding strategies and molecular research for Japanese pear, we sequenced the transcripts of Japanese pear variety ‘Hosui’. To exhaustively collect information of total gene expression, RNA samples from various organs and stages of Japanese pear were sequenced by three technologies, single-molecule real-time (SMRT) sequencing, 454 pyrosequencing, and Sanger sequencing. Using all those reads, we determined comprehensive reference sequences of Japanese pear. Then, their protein sequences were predicted, and biological functional annotations were assigned. Finally, we developed a web database, TRANSNAP (http://plantomics.mind.meiji.ac.jp/nashi), which is the first web resource of Japanese pear omics information. This database provides highly reliable information via a user-friendly web interface: the reference sequences, gene functional annotations, and gene expression profiles from microarray experiments. In addition, based on sequence comparisons among Japanese, Chinese and European pears, similar protein sequences among the pears and species-specific proteins in Japanese pear can be quickly and efficiently identified. TRANSNAP will aid molecular research and breeding in Japanese pear, and its information is available for comparative analysis among other pear species and families.


Author(s):  
Yanping Zhang ◽  
Pengcheng Chen ◽  
Ya Gao ◽  
Jianwei Ni ◽  
Xiaosheng Wang

Aim and Objective:: Given the rapidly increasing number of molecular biology data available, computational methods of low complexity are necessary to infer protein structure, function, and evolution. Method:: In the work, we proposed a novel mthod, FermatS, which based on the global position information and local position representation from the curve and normalized moments of inertia, respectively, to extract features information of protein sequences. Furthermore, we use the generated features by FermatS method to analyze the similarity/dissimilarity of nine ND5 proteins and establish the prediction model of DNA-binding proteins based on logistic regression with 5-fold crossvalidation. Results:: In the similarity/dissimilarity analysis of nine ND5 proteins, the results are consistent with evolutionary theory. Moreover, this method can effectively predict the DNA-binding proteins in realistic situations. Conclusion:: The findings demonstrate that the proposed method is effective for comparing, recognizing and predicting protein sequences. The main code and datasets can download from https://github.com/GaoYa1122/FermatS.


2020 ◽  
Vol 17 (1) ◽  
pp. 59-77
Author(s):  
Anand Kumar Nelapati ◽  
JagadeeshBabu PonnanEttiyappan

Background:Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals.Objective:The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis.Methods:A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed.Results:Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300- 338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species.Conclusion:In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.


2019 ◽  
Vol 16 (4) ◽  
pp. 294-302 ◽  
Author(s):  
Shahid Akbar ◽  
Maqsood Hayat ◽  
Muhammad Kabir ◽  
Muhammad Iqbal

Antifreeze proteins (AFPs) perform distinguishable roles in maintaining homeostatic conditions of living organisms and protect their cell and body from freezing in extremely cold conditions. Owing to high diversity in protein sequences and structures, the discrimination of AFPs from non- AFPs through experimental approaches is expensive and lengthy. It is, therefore, vastly desirable to propose a computational intelligent and high throughput model that truly reflects AFPs quickly and accurately. In a sequel, a new predictor called “iAFP-gap-SMOTE” is proposed for the identification of AFPs. Protein sequences are expressed by adopting three numerical feature extraction schemes namely; Split Amino Acid Composition, G-gap di-peptide Composition and Reduce Amino Acid alphabet composition. Usually, classification hypothesis biased towards majority class in case of the imbalanced dataset. Oversampling technique Synthetic Minority Over-sampling Technique is employed in order to increase the instances of the lower class and control the biasness. 10-fold cross-validation test is applied to appraise the success rates of “iAFP-gap-SMOTE” model. After the empirical investigation, “iAFP-gap-SMOTE” model obtained 95.02% accuracy. The comparison suggested that the accuracy of” iAFP-gap-SMOTE” model is higher than that of the present techniques in the literature so far. It is greatly recommended that our proposed model “iAFP-gap-SMOTE” might be helpful for the research community and academia.


Sign in / Sign up

Export Citation Format

Share Document