In Vitro Assay to Extract Specific Lipid Types from Phospholipid Membranes Using Lipid-Transfer Proteins: A Lesson from the Ceramide Transport Protein CERT

2017 ◽  
pp. 81-98 ◽  
Author(s):  
Kentaro Hanada ◽  
Toshihiko Sugiki
2016 ◽  
Author(s):  
Sandeep Chakraborty

The ubiquitously occuring non-specific lipid-transfer proteins (nsLTPs) in plants are implicated in key processes like biotic and abiotic stress, seed development and lipid transport. Additionally, they constitute a panallergen multigene family present in both food and pollen. Presently there are 49 nsLTP entries in the WHO/IUIS allergen database (http://allergen.org/). Analysis of full-length allergens identified only two major classes (nsLTP1,n=32 and nsLTP2,n=2), although nsLTPs are classified into many other groups. nsLTP1 and nsLTP2 are differentiated by their sequences, molecular weights, pattern of the conserved disulphide bonds and volume of the hydrophobic cavity. The conserved R44 is present in all full length nsLTP1 allergens (only Par j 2 from Parietaria judaica has K44), while D43 is present in all but Par j 1/2 from P. judaica (residue numbering based on PDBid:2ALGA). Although, the importance of these residues is well-established in nsLTP1, the corresponding residues in nsLTP2 remain unknown. A structural motif comprising of two cysteines with a disulphide bond (C3-C50), R44 and D43 identified a congruent motif (C3/C35/R47/D42) in a nsLTP2 protein from rice (PDBid:1L6HA), using the CLASP methodology. This also provides a quantitative method to assess the cross-reactivity potential of different proteins through congruence of an epitope and its neighbouring residues. Future work will involve obtaining the PDB structure of an nsLTP2 allergen and Par j 1/2 nsLTP1 sequences with a missing D43, determine whether nsLTP from other groups beside nsLTP1/2 are allergens, and determine nsLTP allergens from other plants commonly responsible for causing allergic reactions (chickpea, walnut, etc.) based on a genome wide identification of genes with conserved allergen features and their in vitro characterization.


1968 ◽  
Vol 20 (03/04) ◽  
pp. 384-396 ◽  
Author(s):  
G Zbinden ◽  
S Tomlin

SummaryAn in vitro system is described in which adhesion of blood platelets to washed and tannic acid-treated red cells was assayed quantitatively by microscopic observation. ADP, epinephrine and TAME produced a reversible increase in platelet adhesiveness which was antagonized by AMP. With Evans blue, polyanetholsulfonate, phthalanilide NSC 38280, thrombin and heparin at concentrations above 1-4 u/ml the increase was irreversible. The ADP-induced increase in adhesiveness was inhibited by sodium citrate, EDTA, AMP, ATP and N-ethylmaleimide. EDTA, AMP and the SH-blocker N-ethylmaleimide also reduced spontaneous platelet adhesion to red cells. No significant effects were observed with adenosine, phenprocoumon, 5-HT, phthalanilide NSC 57155, various estrogens, progestogens and fatty acids, acetylsalicylic acid and similarly acting agents, hydroxylamine, glucose and KCN. The method may be useful for the screening of thrombogenic and antithrombotic properties of drugs.


2021 ◽  
pp. 1-9
Author(s):  
Anita Virtanen ◽  
Outi Huttala ◽  
Kati Tihtonen ◽  
Tarja Toimela ◽  
Tuula Heinonen ◽  
...  

<b><i>Objective:</i></b> To determine the direct effect of pravastatin on angiogenesis and to study the interaction between pravastatin and maternal sera from women with early- or late-onset pre-eclampsia (PE), intrauterine growth restriction, or healthy pregnancy. <b><i>Methods:</i></b> We collected 5 maternal serum samples from each group. The effect of pravastatin on angiogenesis was assessed with and without maternal sera by quantifying tubule formation in a human-based in vitro assay. Pravastatin was added at 20, 1,000, and 8,000 ng/mL concentrations. Concentrations of angiogenic and inflammatory biomarkers in serum and in test medium after supplementation of serum alone and with pravastatin (1,000 ng/mL) were measured. <b><i>Results:</i></b> Therapeutic concentration of pravastatin (20 ng/mL) did not have significant direct effect on angiogenesis, but the highest concentrations inhibited angiogenesis. Pravastatin did not change the levels of biomarkers in the test media. There were no changes in angiogenesis when therapeutic dose of pravastatin was added with maternal sera, but there was a trend to wide individual variation towards enhanced angiogenesis, particularly in the early-onset PE group. <b><i>Conclusions:</i></b> At therapeutic concentration, pravastatin alone or with maternal sera has no significant effect on angiogenesis, but at high concentrations the effect seems to be anti-angiogenic estimated by in vitro assay.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Isabel J. Skypala ◽  
Ricardo Asero ◽  
Domingo Barber ◽  
Lorenzo Cecchi ◽  
Arazeli Diaz Perales ◽  
...  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
YUHAO QIANG ◽  
Jia Liu ◽  
Ming Dao ◽  
E Du

Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that...


Sign in / Sign up

Export Citation Format

Share Document