Isolation and Analysis of RNA Polymerase Supramolecular Complex with Associated Proteins

Author(s):  
Sanja Mehandziska ◽  
Alexander M. Petrescu ◽  
Georgi Muskhelishvili
1977 ◽  
Vol 166 (2) ◽  
pp. 189-198 ◽  
Author(s):  
P Thomas ◽  
P Davies ◽  
K Griffiths

The characteristics of initiation of RNA synthesis and the elongation of RNA chains on rat ventral-prostate chromatin by RNA polymerase B were investigated by two methods. 1. Initiation was carried out under low-salt conditions with three ribonucleoside triphosphates, and elongation was begun in the absence of reinitiation by the addition of the fourth ribonucleoside triphosphate and increasing the salt concentration. 2. Stable initiation complexes were formed by preincubation of enzyme with template at 37 degrees C, elongation was started by the addition of all four ribonucleoside triphosphates and reinitiation or spurious RNA synthesis was prevented by rifamycin AF/013. The latter method gave more reliable results. The dependence of those parameters on the androgenic status of the animal was studied. During the first 24h after castration, elongation was mainly affected, whereas after 72h a smaller number of initiation sites for RNA polymerase B on chromatin was evident. Considerable diurnal variations in the various parameters were observed. Changes in the relative concentrations of the chromatin-associated proteins were also observed after castration. In the rat ventral-prostate gland androgenic steroids may not only influence one stage of the transcriptional process, but may affect many factors involved in the control of gene expression.


2020 ◽  
Vol 36 (1) ◽  
pp. 1-34 ◽  
Author(s):  
Sara Osman ◽  
Patrick Cramer

Gene transcription by RNA polymerase II (Pol II) is the first step in the expression of the eukaryotic genome and a focal point for cellular regulation during development, differentiation, and responses to the environment. Two decades after the determination of the structure of Pol II, the mechanisms of transcription have been elucidated with studies of Pol II complexes with nucleic acids and associated proteins. Here we provide an overview of the nearly 200 available Pol II complex structures and summarize how these structures have elucidated promoter-dependent transcription initiation, promoter-proximal pausing and release of Pol II into active elongation, and the mechanisms that Pol II uses to navigate obstacles such as nucleosomes and DNA lesions. We predict that future studies will focus on how Pol II transcription is interconnected with chromatin transitions, RNA processing, and DNA repair.


2006 ◽  
Vol 188 (21) ◽  
pp. 7512-7520 ◽  
Author(s):  
Christian Ross ◽  
Christine Pybus ◽  
Mario Pedraza-Reyes ◽  
Huang-Mo Sung ◽  
Ronald E. Yasbin ◽  
...  

ABSTRACT Previously, using a chromosomal reversion assay system, we established that an adaptive mutagenic process occurs in nongrowing Bacillus subtilis cells under stress, and we demonstrated that multiple mechanisms are involved in generating these mutations (41, 43). In an attempt to delineate how these mutations are generated, we began an investigation into whether or not transcription and transcription-associated proteins influence adaptive mutagenesis. In B. subtilis, the Mfd protein (transcription repair coupling factor) facilitates removal of RNA polymerase stalled at transcriptional blockages and recruitment of repair proteins to DNA lesions on the transcribed strand. Here we demonstrate that the loss of Mfd has a depressive effect on stationary-phase mutagenesis. An association between Mfd mutagenesis and aspects of transcription is discussed.


Biochemistry ◽  
2007 ◽  
Vol 46 (11) ◽  
pp. 3023-3035 ◽  
Author(s):  
Seema Verma ◽  
Yijia Xiong ◽  
M. Uljana Mayer ◽  
Thomas C. Squier

2012 ◽  
Vol 23 (4) ◽  
pp. 716-728 ◽  
Author(s):  
Christopher D. Castle ◽  
Erica K. Cassimere ◽  
Catherine Denicourt

The coordination of RNA polymerase I transcription with pre-rRNA processing, preribosomal particle assembly, and nuclear export is a finely tuned process requiring the concerted actions of a number of accessory factors. However, the exact functions of some of these proteins and how they assemble in subcomplexes remain poorly defined. LAS1L was first described as a nucleolar protein required for maturation of the 60S preribosomal subunit. In this paper, we demonstrate that LAS1L interacts with PELP1, TEX10, and WDR18, the mammalian homologues of the budding yeast Rix1 complex, along with NOL9 and SENP3, to form a novel nucleolar complex that cofractionates with the 60S preribosomal subunit. Depletion of LAS1L-associated proteins results in a p53-dependent G1 arrest and leads to defects in processing of the pre-rRNA internal transcribed spacer 2 region. We further show that the nucleolar localization of this complex requires active RNA polymerase I transcription and the small ubiquitin-like modifier–specific protease SENP3. Taken together, our data identify a novel mammalian complex required for 60S ribosomal subunit synthesis, providing further insight into the intricate, yet poorly described, process of ribosome biogenesis in higher eukaryotes.


2015 ◽  
Vol 67 (6) ◽  
pp. 859-865 ◽  
Author(s):  
Valeria Guglielmi ◽  
Matteo Marini ◽  
Émilie Fiola Masson ◽  
Manuela Malatesta ◽  
Diane Forget ◽  
...  

2007 ◽  
Vol 3 (6) ◽  
pp. e84 ◽  
Author(s):  
James C Charity ◽  
Michelle M Costante-Hamm ◽  
Emmy L Balon ◽  
Dana H Boyd ◽  
Eric J Rubin ◽  
...  

2021 ◽  
Author(s):  
Xiafei Zhang ◽  
Sara N. Andres ◽  
Marie A. Elliot

Lsr2 is a small nucleoid-associated protein found throughout the actinobacteria. Lsr2 functions similarly to the well-studied H-NS, in that it preferentially binds AT-rich sequences and represses gene expression. In Streptomyces venezuelae, Lsr2 represses the expression of many specialized metabolic clusters, including the chloramphenicol antibiotic biosynthetic gene cluster, and deleting lsr2 leads to significant upregulation of chloramphenicol cluster expression. We show here that Lsr2 likely exerts its repressive effects on the chloramphenicol cluster by polymerizing along the chromosome, and by bridging sites within and adjacent to the chloramphenicol cluster. CmlR is a known activator of the chloramphenicol cluster, but expression of its associated gene is not upregulated in an lsr2 mutant strain. We demonstrate that CmlR is essential for chloramphenicol production, and further reveal that CmlR functions to 'counter-silence' Lsr2's repressive effects by recruiting RNA polymerase and enhancing transcription, with RNA polymerase effectively clearing bound Lsr2 from the chloramphenicol cluster DNA. Our results provide insight into the interplay between opposing regulatory proteins that govern antibiotic production in S. venezuelae, which could be exploited to maximize the production of bioactive natural products in other systems.


Sign in / Sign up

Export Citation Format

Share Document