Fluorescence Correlation and Cross-Correlation Spectroscopy in Zebrafish

Author(s):  
Xue Wen Ng ◽  
Karuna Sampath ◽  
Thorsten Wohland
2020 ◽  
Author(s):  
Àngels Mateu-Regué ◽  
Jan Christiansen ◽  
Christian Hellriegel ◽  
Finn Cilius Nielsen

ABSTRACTUnderstanding the mRNA life cycle requires analysis of the dynamic macromolecular composition and stoichiometry of mRNPs. Fluorescence correlation and cross-correlation spectroscopy (FCS and FCCS) are appealing technologies to study mRNP complexes because they readily provide information about the molecular composition, stoichiometry, heterogeneity and dynamics of the particles. We developed FCS protocols for analysis of live cells and cellular lysates, and demonstrate the feasibility of analysing common cytoplasmic mRNPs composed of core factor YBX1, IMPs (or IGF2BPs) and their interactions with other RNA binding proteins such as PABPC1, ELAVL2 (HuB), STAU1 and FMRP. FCCS corroborated previously reported RNA dependent interactions between the factors and provided an estimate of the relative overlap between the factors in the mRNPs. In this way FCS and FCCS provide a new and useful approach for the quantitative and dynamic analysis of mRNP macromolecular complexes that may complement current biochemical approaches.


2019 ◽  
Author(s):  
Ipsita Saha ◽  
Saveez Saffarian

AbstractWe present a method utilizing single photon interference and fluorescence correlation spectroscopy (FCS) to simultaneously measure transport of fluorescent molecules within aqueous samples. Our method, within seconds, measures transport in thousands of homogenous voxels (100 nm)3 and eliminates photo-physical artifacts associated with blinking of fluorescent molecules. A comprehensive theoretical framework is presented and validated by measuring transport of quantum dots, associated with VSV-G receptor along cellular membranes as well as within viscous gels.


Sign in / Sign up

Export Citation Format

Share Document