Isolation of Gut, Imaginal Disc, Fat Body, Ovary and Testes in Various Developmental Stages of Drosophila

Author(s):  
Nibedita Nayak ◽  
Gyanaseni Dhar ◽  
Monalisa Mishra
2021 ◽  
Vol 12 ◽  
Author(s):  
Shakil Ahmad ◽  
Momana Jamil ◽  
Muhammad Fahim ◽  
Shujing Zhang ◽  
Farman Ullah ◽  
...  

This study reports the first successful use of oral feeding dsRNA technique for functional characterization of imaginal disc growth factors (IDGFs) genes (IDGF1, IDGF3_1, IDGF4_0, IDGF4_1, and IDGF6) in melon fly Zeugodacus cucurbitae. Phylogenetic and domain analysis indicates that these genes had high similarity with other Tephritidae fruit flies homolog and contain only one conserved domain among these five genes, which is glyco-18 domain (glyco-hydro-18 domain). Gene expression analysis at different developmental stages revealed that these genes were expressed at larval, pupal, and adult stages. To understand their role in different developmental stages, larvae were fed dsRNA-corresponding to each of the five IDGFs, in an artificial diet. RNAi-mediated knockdown of IDGF1 shows no phenotypic effects but caused mortality (10.4%), while IDGF4_0 caused malformed pharate at the adult stage where insects failed to shed their old cuticle and remained attached with their body, highest mortality (49.2%) was recorded compared to dsRNA-green fluorescent protein (GFP) or DEPC. Silencing of IDGF3_1 and IDGF4_1 cause lethal phenotype in larvae, (17.2%) and (40%) mortality was indexed in Z. cucurbitae. IDGF6 was mainly expressed in pupae and adult stages, and its silencing caused a malformation in adult wings. The developmental defects such as malformation in wings, larval–larval lethality, pupal–adult malformation, and small body size show that IDGFs are key developmental genes in the melon fly. Our results provide a baseline for the melon fly management and understanding of IDGFs specific functions in Z. cucurbitae.


2013 ◽  
Vol 63 (2) ◽  
pp. 169-184
Author(s):  
Márcia C. Zirondi ◽  
Tamaris G. Pinheiro ◽  
Carmem S. Fontanetti

This study presents the ovarian morphology and the dynamics of the vitellogenesis process in the oocytes of the diplopod Leptodesmus dentellus. The oocytes are arranged in clusters called ovisacs which are distributed in pairs along the midline of the body forming the ovary. Regions similar to the germarium appear paired in the anterior region of the ovary; however, the development of the oocytes of this species does not follow a regionalisation in the reproductive organ. Cells in three developmental stages are found throughout the length of the ovary. Calcium, proteins, lipids and neutral polysaccharides were detected in the oocytes of L. dentellus. The polysaccharides and the proteins found in the oocytes have a double origin: endogenous, with the participation of the germinative vesicle, and exogenous, from follicular epithelium. The origin of the lipids is exogenous, i.e., they are incorporated into the oocytes, probably derived from the perivisceral fat body, which are highly developed in this region. The deposition of calcium is pre-vitellogenic and probably functions as a reserve during the juvenile stages.


2020 ◽  
Author(s):  
Jack Pilgrim ◽  
Stefanos Siozios ◽  
Matthew Baylis ◽  
Gregory D. D. Hurst

AbstractRickettsia are a group of intracellular bacteria which can manipulate host reproduction and alter sensitivity to natural enemy attack in a diverse range of arthropods. The maintenance of Rickettsia endosymbionts in insect populations can be achieved through both vertical and horizontal transmission routes. For example, the presence of the symbiont in the follicle cells and salivary glands of Bemisia whiteflies allows Belli group Rickettsia transmission via the germline and plants, respectively. However, the transmission routes of other Rickettsia, such as those in the Torix group of the genus, remain underexplored. Through fluorescence in-situ hybridisation (FISH) and transmission electron microscopy (TEM) screening, this study describes the pattern of Torix Rickettsia tissue tropisms in the highland midge, Culicoides impunctatus (Diptera: Ceratopogonidae). Of note is high intensity of infection of the ovarian suspensory ligament, suggestive of a novel germline targeting strategy. Additionally, localisation of the symbiont in tissues of several developmental stages suggests transstadial transmission is a major route of ensuring maintenance of Rickettsia within C. impunctatus populations. Aside from providing insights into transmission strategies, Rickettsia presence in the fat body of larvae indicates potential host fitness and vector capacity impacts to be investigated in the future.Importance StatementMicrobial symbionts of disease vectors have garnered recent attention due to their ability to alter vectorial capacity. Their consideration as a means of arbovirus control depends on symbiont vertical transmission which leads to spread of the bacteria through a population. Previous work has identified a Rickettsia symbiont present in several vector species of biting midges (Culicoides spp.), however, symbiont transmission strategies and host effects remain underexplored. In this study, we describe the presence of Rickettsia in the ovarian suspensory ligament and the ovarian epithelial sheath of Culicoides impunctatus. Infection of these organs suggest the connective tissue surrounding developing eggs is important for ensuring vertical transmission of the symbiont in midges and possibly other insects. Additionally, our results indicate Rickettsia localisation in the fat body of Culicoides impunctatus. As viruses spread by midges often replicate in the fat body, this implies possible vector competence effects to be further investigated.


2021 ◽  
Vol 3 ◽  
Author(s):  
Shan-Shan Gao ◽  
Rui-Min Li ◽  
Shuang Xue ◽  
Yuan-Chen Zhang ◽  
Yong-Lei Zhang ◽  
...  

The red flour beetle, Tribolium castaneum (T. castaneum), generates great financial losses to the grain storage and food processing industries. Previous studies have shown that essential oil (EO) from Artemisia vulgaris (A. vulgaris) has strong contact toxicity to larvae of the beetle, and odorant-binding proteins (OBPs) contribute to the defense of larvae against A. vulgaris. However, the functions of OBPs in insects defending against plant oil is still not clear. Here, expression of one OBP gene, TcOBPC17, was significantly induced 12–72 h after EO exposure. Furthermore, compared to the control group, RNA interference (RNAi) against TcOBPC17 resulted in a higher mortality rate after EO treatment, which suggests that TcOBPC17 involves in the defense against EO and induces a declining sensitivity to EO. In addition, the tissue expression profile analysis revealed that the expression of TcOBPC17 was more abundant in the metabolic detoxification organs of the head, fat body, epidermis, and hemolymph than in other larval tissue. The expression profile of developmental stages showed that TcOBPC17 had a higher level in early and late adult stages than in other developmental stages. Taken together, these results suggest that TcOBPC17 could participate in the sequestration process of exogenous toxicants in T. castaneum larvae.


1999 ◽  
Vol 112 (21) ◽  
pp. 3677-3690 ◽  
Author(s):  
W. Deng ◽  
K. Leaper ◽  
M. Bownes

We report that Drosophila unconventional myosin VI, encoded by Myosin heavy chain at 95F (Mhc95F), is required for both imaginal disc and egg chamber morphogenesis. During oogenesis, Mhc95F is expressed in migrating follicle cells, including the border cells, which migrate between the nurse cells to lie at the anterior of the oocyte; the columnar cells that migrate over the oocyte; the centripetal cells that migrate between the oocyte and nurse cells; and the dorsal-anterior follicle cells, which migrate to secrete the chorionic appendages. Its function during development has been studied using a targeted gene silencing technique, combining the Gal4-UAS targeted expression system and the antisense RNA technique. Antibody staining shows that the expression of myosin 95F is greatly decreased in follicle cells when antisense Mhc95F RNA is expressed. Interfering with expression of Drosophila myosin VI at various developmental stages frequently results in lethality. During metamorphosis it results in adult flies with malformed legs and wings, indicating that myosin VI is essential for imaginal disc morphogenesis. During oogenesis, abnormal follicle cell shapes and aberrant follicle cell migrations are observed when antisense Mhc95F is expressed in follicle cells during stages 9 to 10, suggesting that the Drosophila myosin VI is required for follicle cell epithelial morphogenesis.


Development ◽  
1999 ◽  
Vol 126 (2) ◽  
pp. 211-219 ◽  
Author(s):  
K. Kawamura ◽  
T. Shibata ◽  
O. Saget ◽  
D. Peel ◽  
P.J. Bryant

By fractionating conditioned medium (CM) from Drosophila imaginal disc cell cultures, we have identified a family of Imaginal Disc Growth Factors (IDGFs), which are the first polypeptide growth factors to be reported from invertebrates. The active fraction from CM, as well as recombinant IDGFs, cooperate with insulin to stimulate the proliferation, polarization and motility of imaginal disc cells. The IDGF family in Drosophila includes at least five members, three of which are encoded by three genes in a tight cluster. The proteins are structurally related to chitinases, but they show an amino acid substitution that is known to abrogate catalytic activity. It therefore seems likely that they have evolved from chitinases but acquired a new growth-promoting function. The IDGF genes are expressed most strongly in the embryonic yolk cells and in the fat body of the embryo and larva. The predicted molecular structure, expression patterns, and mitogenic activity of these proteins suggest that they are secreted and transported to target tissues via the hemolymph. However, the genes are also expressed in embryonic epithelia in association with invagination movements, so the proteins may have local as well as systemic functions. Similar proteins are found in mammals and may constitute a novel class of growth factors.


Development ◽  
1975 ◽  
Vol 33 (1) ◽  
pp. 159-175
Author(s):  
Glen Shields ◽  
Andreas Dübendorfer ◽  
James H. Sang

A variety of cell types develop when cells of 6½-8½ h Drosophila embryos are cultured in an improved medium. Nerve, muscle, fat-body, chitin-secreting, and macrophage-like cells (possibly haemocytes) appear in the first 24 h and mature over the next week. Tracheal, imaginal disc, a second stage of the macrophage-like, and a number of unidentified fibroblastic and epithelial cells appear in the 2nd and 3rd week, following a resumption of cell multiplication. There is some organization of some of the cell types into higher structures.


2016 ◽  
Vol 113 (7) ◽  
pp. 1835-1840 ◽  
Author(s):  
Soshiro Kashio ◽  
Fumiaki Obata ◽  
Liu Zhang ◽  
Tomonori Katsuyama ◽  
Takahiro Chihara ◽  
...  

Regulatory mechanisms for tissue repair and regeneration within damaged tissue have been extensively studied. However, the systemic regulation of tissue repair remains poorly understood. To elucidate tissue nonautonomous control of repair process, it is essential to induce local damage, independent of genetic manipulations in uninjured parts of the body. Herein, we develop a system in Drosophila for spatiotemporal tissue injury using a temperature-sensitive form of diphtheria toxin A domain driven by the Q system to study factors contributing to imaginal disc repair. Using this technique, we demonstrate that methionine metabolism in the fat body, a counterpart of mammalian liver and adipose tissue, supports the repair processes of wing discs. Local injury to wing discs decreases methionine and S-adenosylmethionine, whereas it increases S-adenosylhomocysteine in the fat body. Fat body-specific genetic manipulation of methionine metabolism results in defective disc repair but does not affect normal wing development. Our data indicate the contribution of tissue interactions to tissue repair in Drosophila, as local damage to wing discs influences fat body metabolism, and proper control of methionine metabolism in the fat body, in turn, affects wing regeneration.


Sign in / Sign up

Export Citation Format

Share Document