Mediators of Inflammation in Patients with Coronary Artery Disease

2000 ◽  
pp. 467-487
Author(s):  
Mike J. L. DeJongste ◽  
Gert J. Ter Horst
Cytokine ◽  
2018 ◽  
Vol 105 ◽  
pp. 17-22 ◽  
Author(s):  
Joanna Cwikiel ◽  
Ingebjørg Seljeflot ◽  
Eivind Berge ◽  
Ida Unhammer Njerve ◽  
Hilde Ulsaker ◽  
...  

Vaccines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1224
Author(s):  
Mojgan Noroozi Karimabad ◽  
Nicholas G. Kounis ◽  
Gholamhossein Hassanshahi ◽  
Farzaneh Hassanshahi ◽  
Virginia Mplani ◽  
...  

Coronary artery disease (CAD) and coronary heart disease (CHD) constitute two of the leading causes of death in Europe, USA and the rest of the world. According to the latest reports of the Iranian National Health Ministry, CAD is the main cause of death in Iranian patients with an age over 35 years despite a significant reduction in mortality due to early interventional treatments in the context of an acute coronary syndrome (ACS). Inflammation plays a fundamental role in coronary atherogenesis, atherosclerotic plaque formation, acute coronary thrombosis and CAD establishment. Chemokines are well-recognized mediators of inflammation involved in several bio-functions such as leucocyte migration in response to inflammatory signals and oxidative vascular injury. Different chemokines serve as chemo-attractants for a wide variety of cell types including immune cells. CXC motif chemokine ligand 10 (CXCL10), also known as interferon gamma-induced protein 10 (IP-10/CXLC10), is a chemokine with inflammatory features whereas CXC chemokine receptor 3 (CXCR3) serves as a shared receptor for CXCL9, 10 and 11. These chemokines mediate immune responses through the activation and recruitment of leukocytes, eosinophils, monocytes and natural killer (NK) cells. CXCL10, interleukin (IL-15) and interferon (IFN-g) are increased after a COVID-19 vaccination with a BNT162b2 mRNA (Pfizer/BioNTech) vaccine and are enriched by tumor necrosis factor alpha (TNF-α) and IL-6 after the second vaccination. The aim of the present study is the presentation of the elucidation of the crucial role of CXCL10 in the patho-physiology and pathogenesis of CAD and in identifying markers associated with the vaccination resulting in antibody development.


2019 ◽  
Vol 133 (22) ◽  
pp. 2283-2299
Author(s):  
Apabrita Ayan Das ◽  
Devasmita Chakravarty ◽  
Debmalya Bhunia ◽  
Surajit Ghosh ◽  
Prakash C. Mandal ◽  
...  

Abstract The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)−/− mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE−/− mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document