Mimicry of Protein Function with Cell-Penetrating Peptides

Author(s):  
Henrik J. Johansson ◽  
Samir EL Andaloussi ◽  
Ülo Langel
2007 ◽  
Vol 35 (4) ◽  
pp. 807-810 ◽  
Author(s):  
S.A. Moschos ◽  
A.E. Williams ◽  
M.A. Lindsay

The therapeutic application of siRNA (short interfering RNA) shows promise as an alternative approach to small-molecule inhibitors for the treatment of human disease. However, the major obstacle to its use has been the difficulty in delivering these large anionic molecules in vivo. A potential approach to solving this problem is the chemical conjugation of siRNA to the cationic CPPs (cell-penetrating peptides), Tat-(48–60) (transactivator of transcription) and penetratin, which have been shown previously to mediate protein and peptide delivery in a host of animal models. In this transaction, we review recent studies on the utility of siRNA for the investigation of protein function in the airways/lung. We show that, despite previous studies showing the utility of cationic CPPs in vitro, conjugation of siRNA to Tat-(48–60) and penetratin failed to increase residual siRNA-mediated knockdown of p38 MAPK (mitogen-activated protein kinase) (MAPK14) mRNA in mouse lung in vivo. Significantly, we will also discuss potential non-specific actions and the induction of immunological responses by CPPs and their conjugates and how this might limit their application for siRNA-mediated delivery in vivo.


2020 ◽  
Vol 16 ◽  
Author(s):  
Ali Ahmadi ◽  
Hadi Esmaeili Gouvarchin Ghaleh ◽  
Ruhollah Dorostkar ◽  
Mahdieh Farzanehpour ◽  
Masoumeh Bolandian

Abstract:: Cancer is a genetic disease triggered by gene mutations, which control cell growth and their functionality inherited from previous generations. The targeted therapy of some tumors was not especially successful. A host of new techniques can be used to treat aptamer-mediated targeting, cancer immunotherapy, cancer stem cell (CSC) therapy, cell-penetrating peptides (CPPs), hormone therapy, intracellular cancer cell targeting, nanoparticles, and viral therapy. These include chemical-analog conjugation, gene delivery, ligand-receptor-based targeting, prodrug therapies, and triggered release strategies. Virotherapy is a biotechnological technique for turning viruses into therapeutic agents by the reprogramming of viruses to cure diseases. In several tumors, including melanoma, multiple myeloma, bladder cancer, and breast cancer, the oncolytic capacity of oncolytic Coxsackievirus has been studied. The present study aims to assess oncolytic Coxsackievirus and its mechanisms of effect on cancer cells.


Sign in / Sign up

Export Citation Format

Share Document