Assessment of DNA Interstrand Crosslinks Using the Modified Alkaline Comet Assay

Author(s):  
Jian Hong Wu ◽  
Nigel J. Jones
2020 ◽  
Vol 20 (3) ◽  
pp. 453-463
Author(s):  
Svetlana Yagubova ◽  
Aliy Zhanataev ◽  
Rita Ostrovskaya ◽  
Еlena Anisina ◽  
Тatiana Gudasheva ◽  
...  

Background: NGF deficiency is one of the reasons for reduced β-cells survival in diabetes. Our previous experiments revealed the ability of low-weight NGF mimetic, GK-2, to reduce hyperglycaemia in a model of advanced diabetes. The increase in DNA damage in advanced diabetes was repeatedly reported, while there were no data about DNA damage in the initial diabetes. Aim: The study aimed to establish whether DNA damage occurs in initial diabetes and whether GK-2 is able to overcome the damage. Methods: The early-stage diabetes was modelled in Balb/c mice by streptozotocin (STZ) (130 mg/kg, i.p.). GK-2 was administered at a dose of 0.5 mg/kg, i.p., subchronically. The evaluation of DNA damage was performed using the alkaline comet assay; the percentage of DNA in the tail (%TDNA) and the percentage of the atypical DNA comets (“ghost cells”) were determined. Results: STZ at this subthreshold dose produced a slight increase in glycemia and MDA. Meanwhile, pronounced DNA damage was observed, concerning mostly the percentage of “ghost cells” in the pancreas, the liver and kidneys. GK-2 attenuated the degree of hyperglycaemia and reduced the % of “ghost cells” and %TDNA in all the organs examined; this effect continued after discontinuation of the therapy. Conclusion: Early-stage diabetes is accompanied by DNA damage, manifested by the increase of “ghost cells” percentage. The severity of these changes significantly exceeds the degree of hyperglycaemia and MDA accumulation. GK-2 exerts an antihyperglycaemic effect and attenuates the degree of DNA damage. Our results indicate that the comet assay is a highly informative method for search of antidiabetic medicines.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yusuke Hirata ◽  
Miki Takahashi ◽  
Yuto Yamada ◽  
Ryosuke Matsui ◽  
Aya Inoue ◽  
...  

Abstracttrans-Fatty acids (TFAs) are food-derived fatty acids associated with various diseases including cardiovascular diseases. However, the underlying etiology is poorly understood. Here, we show a pro-apoptotic mechanism of TFAs such as elaidic acid (EA), in response to DNA interstrand crosslinks (ICLs) induced by cisplatin (CDDP). We previously reported that TFAs promote apoptosis induced by doxorubicin (Dox), a double strand break (DSB)-inducing agent, via a non-canonical apoptotic pathway independent of tumor suppressor p53 and apoptosis signal-regulating kinase (ASK1), a reactive oxygen species (ROS)-responsive kinase. However, here we found that in the case of CDDP-induced apoptosis, EA-mediated pro-apoptotic action was reversed by knockout of either p53 or ASK1, despite no increase in p53 apoptotic activity. Upon CDDP treatment, EA predominantly enhanced ROS generation, ASK1-p38/c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathway activation, and ultimately cell death, all of which were suppressed either by co-treatment of the NADPH oxidase (Nox) inhibitor Apocynin, or by knocking out its regulatory protein, receptor-interacting protein 1 (RIP1). These results demonstrate that in response to CDDP ICLs, TFAs promote p53-dependent apoptosis through the enhancement of the Nox-RIP1-ASK1-MAPK pathway activation, providing insight into the diverse pathogenetic mechanisms of TFAs according to the types of DNA damage.


2014 ◽  
Vol 7 (Suppl 1) ◽  
pp. P12
Author(s):  
Avani Patel ◽  
Mihir Shah ◽  
Pinaki Patel ◽  
Trupti Patel

2007 ◽  
Vol 172 ◽  
pp. S72
Author(s):  
Ulku Undeger ◽  
Mehmet Korkmaz ◽  
Sevtap Aydin ◽  
Nursen Basaran

2003 ◽  
Vol 89 (12) ◽  
pp. 2271-2276 ◽  
Author(s):  
M A L Moneef ◽  
B T Sherwood ◽  
K J Bowman ◽  
R C Kockelbergh ◽  
R P Symonds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document