Co-immunoprecipitation Protocol to Investigate Cytokine Receptor-Associated Proteins, e.g., Janus Kinases or Other Associated Signaling Proteins

Author(s):  
Claude Haan ◽  
Serge Haan
1996 ◽  
Vol 351 (1336) ◽  
pp. 159-166 ◽  

Hematopoiesis is largely regulated by the binding of cytokines to receptors of the cytokine receptor superfamily. Although lacking catalytic domains, members of the cytokine receptor superfamily mediate ligand dependent activation of tyrosine phosphorylation which is critical for all receptor functions. Recent studies have demonstrated that this is mediated through the association and activation of members of the Janus kinase (Jak) family of protein tyrosine kinases. The activated Jaks phosphorylate the receptors, creating docking sites for SH2 containing signalling proteins which are tyrosine phosphorylated following their association with the receptor complex. Among the substrates of tyrosine phosphorylation are members of the signal transducers and activators of transcription family of proteins (Stats). Various cytokines induce the tyrosine phosphorylation and activation of one or more of the six family members. The pattern of Stat activation provides a level of cytokine individuality that is not observed in the activation of other signalling pathways. Although not required for mitogenic responses, it is speculated that the Stats may mediate many of the cytokine specific functional responses of hematopoietic cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Pan Liu ◽  
Xiao Chen ◽  
Haizhe Zhou ◽  
Liqun Wang ◽  
Zaijun Zhang ◽  
...  

Alzheimer’s disease (AD), the most common neurodegenerative disease, has no effective treatment. Dauricine (DAU), a benzyl tetrahydroisoquinoline alkaloid isolated from the root of Menispermum dauricum DC, reportedly has neuroprotective effects in cerebral ischemia. Here, we investigated the effects of DAU on N2a cells stably transfected with Swedish mutant amyloid precursor protein (N2a/APP), an AD-like cell model. ELISA and Western blot analysis revealed that DAU inhibited APP processing and reduced Aβ accumulation. In addition, DAU ameliorated tau hyperphosphorylation via PP2A, p35/25, and CDK5 pathways in N2a/APP cells. The amelioration of tau hyperphosphorylation by DAU was also validated in HEK293/Tau cells, another cell line with tau hyperphosphorylation. Proteomic analysis revealed 85 differentially expressed proteins in the lysates between the wild-type N2a cells (N2a/WT) and the N2a/APP cells in the presence or absence of DAU; these were classified into 6 main categories according to their functions: endoplasmic reticulum (ER) stress-associated proteins, oxidative stress-associated proteins, cytoskeleton proteins, molecular chaperones, mitochondrial respiration and metabolism-related proteins, and signaling proteins. Taken together, we demonstrated that DAU treatment reduces AD-like pathology, thereby suggesting that DAU has potential therapeutic utility in AD.


1997 ◽  
Vol 138 (1) ◽  
pp. 81-93 ◽  
Author(s):  
Matthew F. Peters ◽  
Marvin E. Adams ◽  
Stanley C. Froehner

The syntrophins are a multigene family of intracellular dystrophin-associated proteins comprising three isoforms, α1, β1, and β2. Based on their domain organization and association with neuronal nitric oxide synthase, syntrophins are thought to function as modular adapters that recruit signaling proteins to the membrane via association with the dystrophin complex. Using sequences derived from a new mouse β1-syntrophin cDNA, and previously isolated cDNAs for α1- and β2-syntrophins, we prepared isoform-specific antibodies to study the expression, skeletal muscle localization, and dystrophin family association of all three syntrophins. Most tissues express multiple syntrophin isoforms. In mouse gastrocnemius skeletal muscle, α1- and β1-syntrophin are concentrated at the neuromuscular junction but are also present on the extrasynaptic sarcolemma. β1-syntrophin is restricted to fast-twitch muscle fibers, the first fibers to degenerate in Duchenne muscular dystrophy. β2-syntrophin is largely restricted to the neuromuscular junction. The sarcolemmal distribution of α1- and β1-syntrophins suggests association with dystrophin and dystrobrevin, whereas all three syntrophins could potentially associate with utrophin at the neuromuscular junction. Utrophin complexes immunoisolated from skeletal muscle are highly enriched in β1- and β2-syntrophins, while dystrophin complexes contain mostly α1- and β1-syntrophins. Dystrobrevin complexes contain dystrophin and α1- and β1-syntrophins. From these results, we propose a model in which a dystrophin–dystrobrevin complex is associated with two syntrophins. Since individual syntrophins do not have intrinsic binding specificity for dystrophin, dystrobrevin, or utrophin, the observed preferential pairing of syntrophins must depend on extrinsic regulatory mechanisms.


1993 ◽  
Vol 178 (3) ◽  
pp. 1049-1055 ◽  
Author(s):  
M Sanchez ◽  
Z Misulovin ◽  
A L Burkhardt ◽  
S Mahajan ◽  
T Costa ◽  
...  

Immunoglobulin (Ig) antigen receptors are composed of a noncovalently-associated complex of Ig and two other proteins, Ig alpha and Ig beta. The cytoplasmic domain of both of these Ig associated proteins contains a consensus sequence that is shared with the signaling proteins of the T cell and Fc receptor. To test the idea that Ig alpha-Ig beta heterodimers are the signaling components of the Ig receptor, we have studied Ig mutations that interfere with signal transduction. We find that specific mutations in the transmembrane domain of Ig that inactivate Ca2+ and phosphorylation responses also uncouple IgM from Ig alpha-Ig beta. These results define amino acid residues that are essential for the assembly of the Ig receptor. Further, receptor activity can be fully reconstituted in Ca2+ flux and phosphorylation assays by fusing the cytoplasmic domain of Ig alpha with the mutant Igs. In contrast, fusion of the cytoplasmic domain of Ig beta to the inactive Ig reconstitutes only Ca2+ responses. Thus, Ig alpha and Ig beta are both necessary and sufficient to mediate signal transduction by the Ig receptor in B cells. In addition, our results suggest that Ig alpha and Ig beta can activate different signaling pathways.


Author(s):  
A. Tonosaki ◽  
M. Yamasaki ◽  
H. Washioka ◽  
J. Mizoguchi

A vertebrate disk membrane is composed of 40 % lipids and 60 % proteins. Its fracture faces have been classed into the plasmic (PF) and exoplasmic faces (EF), complementary with each other, like those of most other types of cell membranes. The hypothesis assuming the PF particles as representing membrane-associated proteins has been challenged by serious questions if they in fact emerge from the crystalline formation or decoration effects during freezing and shadowing processes. This problem seems to be yet unanswered, despite the remarkable case of the purple membrane of Halobacterium, partly because most observations have been made on the replicas from a single face of specimen, and partly because, in the case of photoreceptor membranes, the conformation of a rhodopsin and its relatives remains yet uncertain. The former defect seems to be partially fulfilled with complementary replica methods.


Author(s):  
S.B. Andrews ◽  
R.D. Leapman ◽  
P.E. Gallant ◽  
T.S. Reese

As part of a study on protein interactions involved in microtubule (MT)-based transport, we used the VG HB501 field-emission STEM to obtain low-dose dark-field mass maps of isolated, taxol-stabilized MTs and correlated these micrographs with detailed stereo images from replicas of the same MTs. This approach promises to be useful for determining how protein motors interact with MTs. MTs prepared from bovine and squid brain tubulin were purified and free from microtubule-associated proteins (MAPs). These MTs (0.1-1 mg/ml tubulin) were adsorbed to 3-nm evaporated carbon films supported over Formvar nets on 600-m copper grids. Following adsorption, the grids were washed twice in buffer and then in either distilled water or in isotonic or hypotonic ammonium acetate, blotted, and plunge-frozen in ethane/propane cryogen (ca. -185 C). After cryotransfer into the STEM, specimens were freeze-dried and recooled to ca.-160 C for low-dose (<3000 e/nm2) dark-field mapping. The molecular weights per unit length of MT were determined relative to tobacco mosaic virus standards from elastic scattering intensities. Parallel grids were freeze-dried and rotary shadowed with Pt/C at 14°.


Author(s):  
Kent McDonald

At the light microscope level the recent developments and interest in antibody technology have permitted the localization of certain non-microtubule proteins within the mitotic spindle, e.g., calmodulin, actin, intermediate filaments, protein kinases and various microtubule associated proteins. Also, the use of fluorescent probes like chlorotetracycline suggest the presence of membranes in the spindle. Localization of non-microtubule structures in the spindle at the EM level has been less rewarding. Some mitosis researchers, e.g., Rarer, have maintained that actin is involved in mitosis movements though the bulk of evidence argues against this interpretation. Others suggest that a microtrabecular network such as found in chromatophore granule movement might be a possible force generator but there is little evidence for or against this view. At the level of regulation of spindle function, Harris and more recently Hepler have argued for the importance of studying spindle membranes. Hepler also believes that membranes might play a structural or mechanical role in moving chromosomes.


Author(s):  
R.A Walker ◽  
S. Inoue ◽  
E.D. Salmon

Microtubules polymerized in vitro from tubulin purified free of microtubule-associated proteins exhibit dynamic instability (1,2,3). Free microtubule ends exist in persistent phases of elongation or rapid shortening with infrequent, but, abrupt transitions between these phases. The abrupt transition from elongation to rapid shortening is termed catastrophe and the abrupt transition from rapid shortening to elongation is termed rescue. A microtubule is an asymmetrical structure. The plus end grows faster than the minus end. The frequency of catastrophe of the plus end is somewhat greater than the minus end, while the frequency of rescue of the plus end in much lower than for the minus end (4).The mechanism of catastrophe is controversial, but for both the plus and minus microtubule ends, catastrophe is thought to be dependent on GTP hydrolysis. Microtubule elongation occurs by the association of tubulin-GTP subunits to the growing end. Sometime after incorporation into an elongating microtubule end, the GTP is hydrolyzed to GDP, yielding a core of tubulin-GDP capped by tubulin-GTP (“GTP-cap”).


Author(s):  
P. Gambetti ◽  
G. Perry ◽  
L. Autillo-Gambetti

Neurofibrillary tangles (NFT) are one of the major pathologic lesions of Alzheimer's disease. These neuronal inclusions are predominantly composed of paired helical filaments (PHF), which consist of two 10 nm filaments winding around each other with an approximately 80 nm periodicity. Besides PHF, NFT comprise also 15 nm filaments, 10 nm filaments which are probably neurofilaments, microtubules and granular material. At variance with the neuronal cytoskeleton, PHF are insoluble in ionic detergent.Studies at the light microscope level have shown that NFT have unique antigenic determinants as well as determinants in common with elements of the normal neuronal cytoskeleton such as neurofilaments and microtubule-associated proteins. The present study uses immunocytochemistry and cytochemistry at the electron microscope level to assess which NFT component contains these determinants and whether these antigenic determinants are soluble in an ionic detergent.


Sign in / Sign up

Export Citation Format

Share Document