Combinatorial DNA Assembly Using Golden Gate Cloning

Author(s):  
Carola Engler ◽  
Sylvestre Marillonnet
2017 ◽  
Author(s):  
Niels Wicke ◽  
David Radford ◽  
Valeria Verrone ◽  
Anil Wipat ◽  
Christopher E. French

AbstractBacillus subtilisis a valuable industrial production platform for proteins, a bacterial model for cellular differentiation and its endospores have been proposed as a vehicle for vaccine delivery. As suchB. subtilisis a major synthetic biology chassis but, unlikeEscherichia coli, lacks a standardized toolbox for genetic manipulation. EcoFlex is a versatile modular DNA assembly toolkit forE. colisynthetic biology based on Golden Gate cloning. Here we introduce BacilloFlex, an extension of the EcoFlex assembly standard toB. subtilis. Transcription units flanked by sequences homologous to loci in theB. subtilisgenome were rapidly assembled by the EcoFlex standard and subsequently chromosomally integrated. At present, BacilloFlex includes a range of multi-functionalB. subtilisspecific parts with applications including metabolic engineering, biosensors and spore surface display. We hope this work will form the foundation of a widely adopted cloning standard forB. subtilisfacilitating collaboration and the sharing of parts.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Marcos Valenzuela-Ortega ◽  
Christopher French

Abstract Generation of new DNA constructs is an essential process in modern life science and biotechnology. Modular cloning systems based on Golden Gate cloning, using Type IIS restriction endonucleases, allow assembly of complex multipart constructs from reusable basic DNA parts in a rapid, reliable and automation-friendly way. Many such toolkits are available, with varying degrees of compatibility, most of which are aimed at specific host organisms. Here, we present a vector design which allows simple vector modification by using modular cloning to assemble and add new functions in secondary sites flanking the main insertion site (used for conventional modular cloning). Assembly in all sites is compatible with the PhytoBricks standard, and vectors are compatible with the Standard European Vector Architecture (SEVA) as well as BioBricks. We demonstrate that this facilitates the construction of vectors with tailored functions and simplifies the workflow for generating libraries of constructs with common elements. We have made available a collection of vectors with 10 different microbial replication origins, varying in copy number and host range, and allowing chromosomal integration, as well as a selection of commonly used basic parts. This design expands the range of hosts which can be easily modified by modular cloning and acts as a toolkit which can be used to facilitate the generation of new toolkits with specific functions required for targeting further hosts.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Stefano Vecchione ◽  
Georg Fritz

Abstract Background Synthetic biology heavily depends on rapid and simple techniques for DNA engineering, such as Ligase Cycling Reaction (LCR), Gibson assembly and Golden Gate assembly, all of which allow for fast, multi-fragment DNA assembly. A major enhancement of Golden Gate assembly is represented by the Modular Cloning (MoClo) system that allows for simple library propagation and combinatorial construction of genetic circuits from reusable parts. Yet, one limitation of the MoClo system is that all circuits are assembled in low- and medium copy plasmids, while a rapid route to chromosomal integration is lacking. To overcome this bottleneck, here we took advantage of the conditional-replication, integration, and modular (CRIM) plasmids, which can be integrated in single copies into the chromosome of Escherichia coli and related bacteria by site-specific recombination at different phage attachment (att) sites. Results By combining the modularity of the MoClo system with the CRIM plasmids features we created a set of 32 novel CRIMoClo plasmids and benchmarked their suitability for synthetic biology applications. Using CRIMoClo plasmids we assembled and integrated a given genetic circuit into four selected phage attachment sites. Analyzing the behavior of these circuits we found essentially identical expression levels, indicating orthogonality of the loci. Using CRIMoClo plasmids and four different reporter systems, we illustrated a framework that allows for a fast and reliable sequential integration at the four selected att sites. Taking advantage of four resistance cassettes the procedure did not require recombination events between each round of integration. Finally, we assembled and genomically integrated synthetic ECF σ factor/anti-σ switches with high efficiency, showing that the growth defects observed for circuits encoded on medium-copy plasmids were alleviated. Conclusions The CRIMoClo system enables the generation of genetic circuits from reusable, MoClo-compatible parts and their integration into 4 orthogonal att sites into the genome of E. coli. Utilizing four different resistance modules the CRIMoClo system allows for easy, fast, and reliable multiple integrations. Moreover, utilizing CRIMoClo plasmids and MoClo reusable parts, we efficiently integrated and alleviated the toxicity of plasmid-borne circuits. Finally, since CRIMoClo framework allows for high flexibility, it is possible to utilize plasmid-borne and chromosomally integrated circuits simultaneously. This increases our ability to permute multiple genetic modules and allows for an easier design of complex synthetic metabolic pathways in E. coli.


2018 ◽  
Author(s):  
Pascal Püllmann ◽  
Chris Ulpinnis ◽  
Sylvestre Marillonnet ◽  
Ramona Gruetzner ◽  
Steffen Neumann ◽  
...  

Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Muta-genesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.


2021 ◽  
Author(s):  
Nicolas Krink ◽  
Anne Christina Loechner ◽  
Alexander Anders ◽  
Joerg Kahnt ◽  
Georg Hochberg ◽  
...  

The key next step in synthetic biology is to extend cellular network engineering to the multicellular level by utilizing cell-cell communication for information processing. To facilitate the implementation of multicellular networks in the most commonly used eukaryotic chassis, Saccharomyces cerevisiae, we developed the yeast communication toolkit (YCTK). This toolkit is based on the fungal mating pathway and contains five pheromone-inducible promoters (response parts), eleven pheromones (α-factors; sender parts), eleven pheromone receptors (Ste2; receiver parts), as well as five Bar1 proteases (suppressor parts). All YCTK parts were thoroughly characterized and are compatible with the commonly used yeast Golden Gate cloning standard. We demonstrated the application of the YCTK by implementing several different logic gate-like population networks. Furthermore, we used this toolkit to investigate the pheromone-receptor promiscuity patterns among different yeast species. This toolkit extends currently available resources for construction of complex multicellular eukaryotic networks with varying degrees of promiscuity and attenuation.


2018 ◽  
Author(s):  
Potapov Vladimir ◽  
Jennifer L. Ong ◽  
Rebecca B. Kucera ◽  
Bradley W. Langhorst ◽  
Katharina Bilotti ◽  
...  

ABSTRACTModern synthetic biology depends on the manufacture of large DNA constructs from libraries of genes, regulatory elements or other genetic parts. Type IIS restriction enzyme-dependent DNA assembly methods (e.g., Golden Gate) enable rapid one-pot, ordered, multi-fragment DNA assembly, facilitating the generation of high-complexity constructs. The order of assembly of genetic parts is determined by the ligation of flanking Watson-Crick base-paired overhangs. The ligation of mismatched overhangs leads to erroneous assembly, and the need to avoid such pairings has typically been accomplished by using small sets of empirically vetted junction pairs, limiting the number of parts that can be joined in a single reaction. Here, we report the use of a comprehensive method for profiling end-joining ligation fidelity and bias to predict highly accurate sets of connections for ligation-based DNA assembly methods. This data set allows quantification of sequence-dependent ligation efficiency and identification of mismatch-prone pairings. The ligation profile accurately predicted junction fidelity in ten-fragment Golden Gate assembly reactions, and enabled efficient assembly of a lac cassette from up to 24-fragments in a single reaction. Application of the ligation fidelity profile to inform choice of junctions thus enables highly flexible assembly design, with >20 fragments in a single reaction.


Author(s):  
Daniel Stukenberg ◽  
Tobias Hensel ◽  
Josef Hoff ◽  
Benjamin Daniel ◽  
René Inckemann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document