scholarly journals Golden Mutagenesis: An efficient multi-sitesaturation mutagenesis approach by Golden Gate cloning with automated primer design

2018 ◽  
Author(s):  
Pascal Püllmann ◽  
Chris Ulpinnis ◽  
Sylvestre Marillonnet ◽  
Ramona Gruetzner ◽  
Steffen Neumann ◽  
...  

Site-directed methods for the generation of genetic diversity are essential tools in the field of directed enzyme evolution. The Golden Gate cloning technique has been proven to be an efficient tool for a variety of cloning setups. The utilization of restriction enzymes which cut outside of their recognition domain allows the assembly of multiple gene fragments obtained by PCR amplification without altering the open reading frame of the reconstituted gene. We have developed a protocol, termed Golden Muta-genesis that allows the rapid, straightforward, reliable and inexpensive construction of mutagenesis libraries. One to five amino acid positions within a coding sequence could be altered simultaneously using a protocol which can be performed within one day. To facilitate the implementation of this technique, a software library and web application for automated primer design and for the graphical evaluation of the randomization success based on the sequencing results was developed. This allows facile primer design and application of Golden Mutagenesis also for laboratories, which are not specialized in molecular biology.

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2542
Author(s):  
Won-Nyeong Kim ◽  
Hye-Jeong Kim ◽  
Young-Soo Chung ◽  
Hyun-Uk Kim

CRISPR/Cas9 is a commonly used technique in reverse-genetics research to knock out a gene of interest. However, when targeting a multigene family or multiple genes, it is necessary to construct a vector with multiple single guide RNAs (sgRNAs) that can navigate the Cas9 protein to the target site. In this protocol, the Golden Gate cloning method was used to generate multiple sgRNAs in the Cas9 vector. The vectors used were pHEE401E_UBQ_Bar and pBAtC_tRNA, which employ a one-promoter/one-sgRNA and a polycistronic-tRNA-gRNA strategy, respectively. Golden Gate cloning was performed with type IIS restriction enzymes to generate gRNA polymers for vector inserts. Four sgRNAs containing the pHEE401E_UBQ_Bar vector and four to six sgRNAs containing the pBAtC_tRNA vector were constructed. In practice, we constructed multiple sgRNAs targeting multiple genes of FAD2 and FATB in soybean using this protocol. These three vectors were transformed into soybeans using the Agrobacterium-mediated method. Using deep sequencing, we confirmed that the T0 generation transgenic soybean was edited at various indel ratios in the predicted target regions of the FAD2 and FATB multigenes. This protocol is a specific guide that allows researchers to easily follow the cloning of multiple sgRNAs into commonly used CRISPR/Cas9 vectors for plants.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Pascal Püllmann ◽  
Chris Ulpinnis ◽  
Sylvestre Marillonnet ◽  
Ramona Gruetzner ◽  
Steffen Neumann ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Marcos Valenzuela-Ortega ◽  
Christopher French

Abstract Generation of new DNA constructs is an essential process in modern life science and biotechnology. Modular cloning systems based on Golden Gate cloning, using Type IIS restriction endonucleases, allow assembly of complex multipart constructs from reusable basic DNA parts in a rapid, reliable and automation-friendly way. Many such toolkits are available, with varying degrees of compatibility, most of which are aimed at specific host organisms. Here, we present a vector design which allows simple vector modification by using modular cloning to assemble and add new functions in secondary sites flanking the main insertion site (used for conventional modular cloning). Assembly in all sites is compatible with the PhytoBricks standard, and vectors are compatible with the Standard European Vector Architecture (SEVA) as well as BioBricks. We demonstrate that this facilitates the construction of vectors with tailored functions and simplifies the workflow for generating libraries of constructs with common elements. We have made available a collection of vectors with 10 different microbial replication origins, varying in copy number and host range, and allowing chromosomal integration, as well as a selection of commonly used basic parts. This design expands the range of hosts which can be easily modified by modular cloning and acts as a toolkit which can be used to facilitate the generation of new toolkits with specific functions required for targeting further hosts.


2021 ◽  
Author(s):  
Claire Daguin Thiebaut ◽  
Stephanie Ruault ◽  
Charlotte Roby ◽  
Thomas Broquet ◽  
Frédérique Viard ◽  
...  

This protocol describes a double digested restriction-site associated DNA (ddRADseq) procedure, that is a variation on the original RAD sequencing method (Davey & Blaxter 2011), which is used for de novo SNP discovery and genotyping. This protocol differs from the original ddRADseq protocol (Peterson et al 2012), in which the samples are pooled just after the ligation to adaptors (i.e. before size selection and PCR). The present ddRAD protocol as been slightly adapted from Alan Brelsford's protocol published in the supplementary material of this paper: Brelsford, A., Dufresnes, C. & Perrin, N. 2016. High-density sex-specific linkage maps of a European tree frog (Hyla arborea) identify the sex chromosome without information on offspring sex. Heredity 116, 177–181 (2016). https://doi.org/10.1038/hdy.2015.83 In the present protocol, all samples are treated separately, in a microplate, until final PCR amplification performed before pooling. Despite being slightly more costly and time-consuming in the lab, it allows for fine adjustement of each sample representation in the final library pool, ensuring similar number of sequencing reads per sample in the final dataset. Briefly, genomic DNA from the samples are individually digested with 2 restriction enzymes (one rare-cutter and one more frequent cutter) then ligated to a barcoded adaptor (among 24 available) at one side, and a single adaptor at the other side, purified with magnetic beads, and PCR-amplified allowing the addition of a Illumina index (among 12 available) for multiplexing a maximum of 288 sample per library. Samples are then pooled in equimolar conditions after visualisation on an agarose gel. Purification and size selection is then performed before final quality control of the library and sequencing.


2011 ◽  
Vol 44 (8-9) ◽  
pp. 692-698 ◽  
Author(s):  
Li-Yan Li ◽  
Qiang Li ◽  
Yan-Hong Yu ◽  
Mei Zhong ◽  
Lei Yang ◽  
...  

2007 ◽  
Vol 32 (5) ◽  
pp. 373-380 ◽  
Author(s):  
Jorge F. Pereira ◽  
Mariana D.C. Ignacchiti ◽  
Elza F. Araújo ◽  
Sérgio H. Brommonschenkel ◽  
Júlio C.M. Cascardo ◽  
...  

Reverse transcriptase (RT) sequence analysis is an important technique used to detect the presence of transposable elements in a genome. Putative RT sequences were analyzed in the genome of the pathogenic fungus C. perniciosa, the causal agent of witches' broom disease of cocoa. A 394 bp fragment was amplified from genomic DNA of different isolates of C. perniciosa belonging to C-, L-, and S-biotypes and collected from various geographical areas. The cleavage of PCR products with restriction enzymes and the sequencing of various RT fragments indicated the presence of several sequences showing transition events (G:C to A:T). Southern blot analysis revealed high copy numbers of RT signals, forming different patterns among C-, S-, and L-biotype isolates. Sequence comparisons of the predicted RT peptide indicate a close relationship with the RT protein from thegypsy family of LTR-retrotransposons. The possible role of these retrotransposons in generating genetic variability in the homothallic C. perniciosa is discussed.


2010 ◽  
Vol 84 (6) ◽  
pp. 2648-2656 ◽  
Author(s):  
Ronen Borenstein ◽  
Haim Zeigerman ◽  
Niza Frenkel

ABSTRACT Human herpesvirus 6A (HHV-6A) and HHV-6B are lymphotropic viruses which replicate in cultured activated cord blood mononuclear cells (CBMCs) and in T-cell lines. Viral genomes are composed of 143-kb unique (U) sequences flanked by ∼8- to 10-kb left and right direct repeats, DRL and DRR. We have recently cloned HHV-6A (U1102) into bacterial artificial chromosome (BAC) vectors, employing DNA replicative intermediates. Surprisingly, HHV-6A BACs and their parental DNAs were found to contain short ∼2.7-kb DRs. To test whether DR shortening occurred during passaging in CBMCs or in the SupT1 T-cell line, we compared packaged DNAs from various passages. Restriction enzymes, PCR, and sequencing analyses have shown the following. (i) Early (1992) viral preparations from CBMCs contained ∼8-kb DRs. (ii) Viruses currently propagated in SupT1 cells contained ∼2.7-kb DRs. (iii) The deletion spans positions 60 to 5545 in DRL, including genes encoded by DR1 through the first exon of DR6. The pac-2-pac-1 packaging signals, the DR7 open reading frame (ORF), and the DR6 second exon were not deleted. (iv) The DRR sequence was similarly shortened by 5.4 kb. (v) The DR1 through DR6 first exon sequences were deleted from the entire HHV-6A BACs, revealing that they were not translocated into other genome locations. (vi) When virus initially cultured in CBMCs was passaged in SupT1 cells no DR shortening occurred. (vii) Viral stocks possessing short DRs replicated efficiently, revealing the plasticity of herpesvirus genomes. We conclude that the DR deletion occurred once, producing virus with advantageous growth “conquering” the population. The DR1 gene and the first DR6 exon are not required for propagation in culture.


2018 ◽  
Vol 10 (1) ◽  
pp. 153-159
Author(s):  
Rohma Istiana ◽  
Hermin Pancasakti Kusumaningrum ◽  
Rejeki Siti Ferniah

The identification and the characterization of genetic diversity of rice was the first step in the rice plant breeding program. This study aimed to detect indica or japonica sub-species on upland rice Situ Bagendit and inbred rice Ciherang using molecular markers ORF 29-TrnC (GCA) on the chloroplast genome. Rice was included to the indica sub-species if the 32 bp insertion on ORF 29-TrnC (GCA) sequence was found, on the contrary, if the deletion 32 bp on ORF 29-TrnC (GCA) was found then it was included to the japonica sub-species. DNA isolation was examined from the leaves of the rice plants, and then it tested quantitatively to determine the transparency and DNA concentration from the isolation results. PCR amplification was performed using a pair of primers CP2 and it was followed by agarose gel electrophoresis. The visualization of the DNA bands used the gel documentation. Sequencing of PCR products produced a long base 390 bp in Situ Bagendit rice and 390 bp in Ciherang rice. Analysis of the sequences showed that the insertions occurred throughout the 32 bp in Situ Bagendit rice and the insertions occurred throughout the 32 bp in Ciherang rice. The results showed that upland rice Situ Bagendit and inbred rice Ciherang were included in the indica sub-species. The knowledge of variety of genetics of rice can be used as bio-information in the plant breeding program. Further, the knowledge can be used to protect in genetic power source, the selection and the composing of superior varieties of rice which is tolerant with kinds of biotic and abiotic factor.


2019 ◽  
Author(s):  
Gabriel A. Suárez ◽  
Kyle R. Dugan ◽  
Brian A. Renda ◽  
Sean P. Leonard ◽  
Lakshmi S. Gangavarapu ◽  
...  

ABSTRACTOne goal of synthetic biology is to improve the efficiency and predictability of living cells by removing extraneous genes from their genomes. We demonstrate improved methods for engineering the genome of the metabolically versatile and naturally transformable bacterium Acinetobacter baylyi ADP1 and apply them to a genome streamlining project. In Golden Transformation, linear DNA fragments constructed by Golden Gate Assembly are directly added to cells to create targeted deletions, edits, or additions to the chromosome. We tested the dispensability of 55 regions of the ADP1 chromosome using Golden Transformation. The 19 successful multiple-gene deletions ranged in size from 21 to 183 kilobases and collectively accounted for 24.6% of its genome. Deletion success could only be partially predicted on the basis of a single-gene knockout strain collection and a new Tn-Seq experiment. We further show that ADP1’s native CRISPR/Cas locus is active and can be retargeted using Golden Transformation. We reprogrammed it to create a CRISPR-Lock, which validates that a gene has been successfully removed from the chromosome and prevents it from being reacquired. These methods can be used together to implement combinatorial routes to further genome streamlining and for more rapid and assured metabolic engineering of this versatile chassis organism.


Sign in / Sign up

Export Citation Format

Share Document