Utilisation of Ice Rink Waste Heat by Aid of Heat Pumps

Author(s):  
Juris Pomerancevs ◽  
Jörgen Rogstam ◽  
Agnese Līckrastiņa
Keyword(s):  
Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 954 ◽  
Author(s):  
Hanne Kauko ◽  
Daniel Rohde ◽  
Armin Hafner

District heating enables an economical use of energy sources that would otherwise be wasted to cover the heating demands of buildings in urban areas. For efficient utilization of local waste heat and renewable heat sources, low distribution temperatures are of crucial importance. This study evaluates a local heating network being planned for a new building area in Trondheim, Norway, with waste heat available from a nearby ice skating rink. Two alternative supply temperature levels have been evaluated with dynamic simulations: low temperature (40 °C), with direct utilization of waste heat and decentralized domestic hot water (DHW) production using heat pumps; and medium temperature (70 °C), applying a centralized heat pump to lift the temperature of the waste heat. The local network will be connected to the primary district heating network to cover the remaining heat demand. The simulation results show that with a medium temperature supply, the peak power demand is up to three times higher than with a low temperature supply. This results from the fact that the centralized heat pump lifts the temperature for the entire network, including space and DHW heating demands. With a low temperature supply, heat pumps are applied only for DHW production, which enables a low and even electricity demand. On the other hand, with a low temperature supply, the district heating demand is high in the wintertime, in particular if the waste heat temperature is low. The choice of a suitable supply temperature level for a local heating network is hence strongly dependent on the temperature of the available waste heat, but also on the costs and emissions related to the production of district heating and electricity in the different seasons.


2000 ◽  
Author(s):  
Jens Møller Andersen

Abstract Heat integration with absorption heat pumps requires investigation of many types of plant designs. In this article, it is concluded that in many cases high temperature absorption systems for heat recovery are more economically feasible than absorption systems for cooling purposes. The conclusion is based on a project where the scope was to investigate technical and economical possibilities for heat integration of an absorption heat pump in a milk powder plant. The first idea behind the project was to use the waste heat from the rejected air to drive an absorption cooling system to reduce the electricity consumption for cooling proposes. The model of the plant was based on simulations as a background for a time averaged COP model. It was concluded that an absorption system for generating low temperature steam is more feasible.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 635 ◽  
Author(s):  
Limei Gai ◽  
Petar Sabev Varbanov ◽  
Timothy Gordon Walmsley ◽  
Jiří Jaromír Klemeš

To date, research on heat pumps (HP) has mainly focused on vapour compression heat pumps (VCHP), transcritical heat pumps (TCHP), absorption heat pumps, and their heat integration with processes. Few studies have considered the Joule cycle heat pump (JCHP), which raises several questions. What are the characteristics and specifics of these different heat pumps? How are they different when they integrate with the processes? For different processes, which heat pump is more appropriate? To address these questions, the performance and integration of different types of heat pumps with various processes have been studied through Pinch Methodology. The results show that different heat pumps have their own optimal application range. The new JCHP is suitable for processes in which the temperature changes of source and sink are both massive. The VCHP is more suitable for the source and sink temperatures, which are near-constant. The TCHP is more suitable for sources with small temperature changes and sinks with large temperature changes. This study develops an approach that provides guidance for the selection of heat pumps by applying Process Integration to various combinations of heat pump types and processes. It is shown that the correct choice of heat pump type for each application is of utmost importance, as the Coefficient of Performance can be improved by up to an order of magnitude. By recovering and upgrading process waste heat, heat pumps can save 15–78% of the hot utility depending on the specific process.


2017 ◽  
Vol 25 ◽  
pp. 128-135 ◽  
Author(s):  
Pavlo Saik

The aim of this paper is to study the methods and develop technological scheme for thermal energy removal from coal mine rock waste dumps. The prospects of renewable energy sources development in Ukraine are analyzed. A number of available ways for using the sources of waste heat of mining enterprises, namely: outlet ventilation flow, mine water and other rock waste dumps, are investigated. The technological scheme of heat recovery from rock waste dump using heat pumps, which are component segments of the heat pump geosystem on the basis of borehole underground coal gasification, is developed.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 803
Author(s):  
LanXin Lai ◽  
Toshio Imai ◽  
Motohiro Umezu ◽  
Mamoru Ishii ◽  
Hironao Ogura

Improving energy recycle is an important way to save energy resources and preserve the global environment. Chemical heat pump (CHP) is a technology for saving energy, which utilizes chemical reactions to store thermal energy such as waste heat and solar heat, then release it to provide heat for heating/cooling/refrigeration. For a practical CHP, it is necessary to find cheaper and more stable supply materials. In order to evaluate the possibility of calcium oxide from natural Ofunato natural limestone including impurities, we compare Ofunato limestone with Kawara natural limestone and Garou natural limestone from Japan. These calcium oxides worked as a reactant for CaO/H2O/Ca(OH)2 CHP by repeated hydration/dehydration reaction cycle experiments in a thermogravimetric analyzer. As a result, Ofunato CaO exhibits a high hydration reaction rate after decarbonization at 1223 K for 5 h. The reactivity increased by the repeated hydration reaction although the first hydration rate was low. Furthermore, the sintering of impurities in Ofunato limestone occur easier than that in Kawara limestone with lower impurities. The impurities adhered to the surface of the CaO particle to make specific surface area of CaO particle smaller, which could inhibit hydration reaction of CaO particle. Even if Ofunato limestone contains some impurities, it can be utilized as a raw material for chemical heat pumps.


2020 ◽  
Vol 269 ◽  
pp. 115056 ◽  
Author(s):  
Antti Uusitalo ◽  
Teemu Turunen-Saaresti ◽  
Juha Honkatukia ◽  
Jonna Tiainen ◽  
Ahti Jaatinen-Värri

Author(s):  
Alex Raymond ◽  
Srinivas Garimella

Adsorption heat pumps and chillers can utilize solar or waste heat to provide space conditioning, process heating or cooling, or energy storage. In these devices, accurate modeling of intraparticle adsorbate mass transfer is an important part of predicting overall performance. The linear driving force (LDF) approximation is often used for modeling intraparticle mass transfer in place of the more detailed Fickian diffusion (FD) equation for its computational simplicity. This paper directly compares the adsorbate contents predicted by the conventional LDF approximation, an empirical LDF approximation proposed by El-Sharkawy et al. [1], and the FD equations for cylindrical adsorbent fibers such as activated carbon fiber (ACF). The conditions under which the LDFs agree with the FD equation are then evaluated. It is shown that for a given working pair, agreement between the LDF and FD equations is affected by the diffusivity, particle radius, half-cycle time, initial adsorbate content, and equilibrium adsorbate content. The maximum possible error in adsorbate content predicted by the LDF approximation compared with the FD solution is then calculated for the ACF (A-20)-ethanol working pair. Although the maximum error will be different for other cases, the technique used in this paper can be reproduced to determine the greatest possible LDF error for any working pair.


Sign in / Sign up

Export Citation Format

Share Document