Constraint-Based Modeling of Metabolic Interactions in and Between Astrocytes and Neurons

Author(s):  
Tunahan Çakır
2018 ◽  
Vol 35 (13) ◽  
pp. 2332-2334 ◽  
Author(s):  
Federico Baldini ◽  
Almut Heinken ◽  
Laurent Heirendt ◽  
Stefania Magnusdottir ◽  
Ronan M T Fleming ◽  
...  

Abstract Motivation The application of constraint-based modeling to functionally analyze metagenomic data has been limited so far, partially due to the absence of suitable toolboxes. Results To address this gap, we created a comprehensive toolbox to model (i) microbe–microbe and host–microbe metabolic interactions, and (ii) microbial communities using microbial genome-scale metabolic reconstructions and metagenomic data. The Microbiome Modeling Toolbox extends the functionality of the constraint-based reconstruction and analysis toolbox. Availability and implementation The Microbiome Modeling Toolbox and the tutorials at https://git.io/microbiomeModelingToolbox.


2018 ◽  
Author(s):  
Federico Baldini ◽  
Almut Heinken ◽  
Laurent Heirendt ◽  
Stefania Magnusdottir ◽  
Ronan M.T. Fleming ◽  
...  

MotivationThe application of constraint-based modeling to functionally analyze metagenomic data has been limited so far, partially due to the absence of suitable toolboxes.ResultsTo address this shortage, we created a comprehensive toolbox to model i) microbe-microbe and host-microbe metabolic interactions, and ii) microbial communities using microbial genome-scale metabolic reconstructions and metagenomic data. The Microbiome Modeling Toolbox extends the functionality of the COBRA Toolbox.AvailabilityThe Microbiome Modeling Toolbox and the tutorials at https://git.io/microbiomeModelingToolbox.


2021 ◽  
Author(s):  
Junmin Wang ◽  
Alireza Delfarah ◽  
Patrick Gelbach ◽  
Emma Fong ◽  
Paul Macklin ◽  
...  

Colorectal cancer (CRC) is a major cause of morbidity and mortality in the United States. Tumor-stromal metabolic crosstalk in the tumor microenvironment promotes CRC development and progression, but exactly how stromal cells, in particular cancer- associated fibroblasts (CAFs), affect the metabolism of tumor cells remains unknown. Here we take a data-driven approach to investigate the metabolic interactions between CRC cells and CAFs, integrating constraint-based modeling and metabolomic profiling. Using metabolomics data, we perform unsteady-state parsimonious flux balance analysis to infer flux distributions for central carbon metabolism in CRC cells treated with or without CAF-conditioned media. We find that CAFs reprogram CRC metabolism through stimulation of glycolysis, the oxidative arm of the pentose phosphate pathway (PPP), and glutaminolysis as well as inhibition of the tricarboxylic acid cycle. To identify potential therapeutic targets, we simulate enzyme knockouts and find that inhibiting the hexokinase and glucose-6-phosphate dehydrogenase reactions exploits the CAF-induced dependence of CRC cells on glycolysis and oxidative PPP. Our work gives mechanistic insights into the metabolic interactions between CRC cells and CAFs and provides a framework for testing hypotheses towards CRC-targeted therapies.


1982 ◽  
Vol 37 (9) ◽  
pp. 839-844 ◽  
Author(s):  
Karel Sláma

In larval and pupal stages of several insect species the changes in total body metabolism appear to be inversely proportional to the course of ecdysteroid titres. The largest peaks of ecdysteroid occur exactly at the time of the lowest metabolic rates. These relationships are consequences of the developmental programming; ecdysteroid has no direct antimetabolic action. The problem of ecdysteroid-metabolic interactions has been discussed in relation to possible homeostatic function of ecdysteroids in insect development.


2021 ◽  
Vol 70 ◽  
pp. 241-247
Author(s):  
Davar Abedini ◽  
Sébastien Jaupitre ◽  
Harro Bouwmeester ◽  
Lemeng Dong

2020 ◽  
Vol 22 (1) ◽  
pp. 141
Author(s):  
George Anderson

This article reviews the dynamic interactions of the tumour microenvironment, highlighting the roles of acetyl-CoA and melatonergic pathway regulation in determining the interactions between oxidative phosphorylation (OXPHOS) and glycolysis across the array of cells forming the tumour microenvironment. Many of the factors associated with tumour progression and immune resistance, such as yin yang (YY)1 and glycogen synthase kinase (GSK)3β, regulate acetyl-CoA and the melatonergic pathway, thereby having significant impacts on the dynamic interactions of the different types of cells present in the tumour microenvironment. The association of the aryl hydrocarbon receptor (AhR) with immune suppression in the tumour microenvironment may be mediated by the AhR-induced cytochrome P450 (CYP)1b1-driven ‘backward’ conversion of melatonin to its immediate precursor N-acetylserotonin (NAS). NAS within tumours and released from tumour microenvironment cells activates the brain-derived neurotrophic factor (BDNF) receptor, TrkB, thereby increasing the survival and proliferation of cancer stem-like cells. Acetyl-CoA is a crucial co-substrate for initiation of the melatonergic pathway, as well as co-ordinating the interactions of OXPHOS and glycolysis in all cells of the tumour microenvironment. This provides a model of the tumour microenvironment that emphasises the roles of acetyl-CoA and the melatonergic pathway in shaping the dynamic intercellular metabolic interactions of the various cells within the tumour microenvironment. The potentiation of YY1 and GSK3β by O-GlcNAcylation will drive changes in metabolism in tumours and tumour microenvironment cells in association with their regulation of the melatonergic pathway. The emphasis on metabolic interactions across cell types in the tumour microenvironment provides novel future research and treatment directions.


2021 ◽  
Vol 332 ◽  
pp. 125119
Author(s):  
Sijie Huang ◽  
Mengmeng Shen ◽  
Zhiyong Jason Ren ◽  
Houkai Wu ◽  
Hao Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document