scholarly journals The Microbiome Modeling Toolbox: from microbial interactions to personalized microbial communities

2018 ◽  
Vol 35 (13) ◽  
pp. 2332-2334 ◽  
Author(s):  
Federico Baldini ◽  
Almut Heinken ◽  
Laurent Heirendt ◽  
Stefania Magnusdottir ◽  
Ronan M T Fleming ◽  
...  

Abstract Motivation The application of constraint-based modeling to functionally analyze metagenomic data has been limited so far, partially due to the absence of suitable toolboxes. Results To address this gap, we created a comprehensive toolbox to model (i) microbe–microbe and host–microbe metabolic interactions, and (ii) microbial communities using microbial genome-scale metabolic reconstructions and metagenomic data. The Microbiome Modeling Toolbox extends the functionality of the constraint-based reconstruction and analysis toolbox. Availability and implementation The Microbiome Modeling Toolbox and the tutorials at https://git.io/microbiomeModelingToolbox.

2018 ◽  
Author(s):  
Federico Baldini ◽  
Almut Heinken ◽  
Laurent Heirendt ◽  
Stefania Magnusdottir ◽  
Ronan M.T. Fleming ◽  
...  

MotivationThe application of constraint-based modeling to functionally analyze metagenomic data has been limited so far, partially due to the absence of suitable toolboxes.ResultsTo address this shortage, we created a comprehensive toolbox to model i) microbe-microbe and host-microbe metabolic interactions, and ii) microbial communities using microbial genome-scale metabolic reconstructions and metagenomic data. The Microbiome Modeling Toolbox extends the functionality of the COBRA Toolbox.AvailabilityThe Microbiome Modeling Toolbox and the tutorials at https://git.io/microbiomeModelingToolbox.


2020 ◽  
Author(s):  
Tony J. Lam ◽  
Moses Stamboulian ◽  
Wontack Han ◽  
Yuzhen Ye

AbstractMicrobial community members exhibit various forms of interactions. Taking advantage of the increasing availability of microbiome data, many computational approaches have been developed to infer bacterial interactions from the co-occurrence of microbes across diverse microbial communities. Additionally, the introduction of genome-scale metabolic models have also enabled the inference of metabolic interactions, such as competition and cooperation, between bacterial species. By nature, phylogenetically similar microbial species are likely to share common functional profiles or biological pathways due to their genomics similarity. Without properly factoring out the phylogenetic relationship, any estimation of the competition and cooperation based on functional/pathway profiles may bias downstream applications.To address these challenges, we developed a novel approach for estimating the competition and complementarity indices for a pair of microbial species, adjusted by their phylogenetic distance. An automated pipeline, PhyloMint, was implemented to construct competition and complementarity indices from genome scale metabolic models derived from microbial genomes. Application of our pipeline to 2,815 human-gut bacteria showed high correlation between phylogenetic distance and metabolic competition/cooperation indices among bacteria. Using a discretization approach, we were able to detect pairs of bacterial species with cooperation scores significantly higher than the average pairs of bacterial species with similar phylogenetic distances. A network community analysis of high metabolic cooperation but low competition reveals distinct modules of bacterial interactions. Our results suggest that niche differentiation plays a dominant role in microbial interactions, while habitat filtering also plays a role among certain clades of bacterial species.Author summaryMicrobial communities, also known as microbiomes, are formed through the interactions of various microbial species. Utilizing genomic sequencing, it is possible to infer the compositional make-up of communities as well as predict their metabolic interactions. However, because some species are more similarly related to each other, while others are more distantly related, one cannot directly compare metabolic relationships without first accounting for their phylogenetic relatedness. Here we developed a computational pipeline which predicts complimentary and competitive metabolic relationships between bacterial species, while normalizing for their phylogenetic relatedness. Our results show that phylogenetic distances are correlated with metabolic interactions, and factoring out such relationships can help better understand microbial interactions which drive community formation.


2015 ◽  
Vol 112 (20) ◽  
pp. 6449-6454 ◽  
Author(s):  
Aleksej Zelezniak ◽  
Sergej Andrejev ◽  
Olga Ponomarova ◽  
Daniel R. Mende ◽  
Peer Bork ◽  
...  

Microbial communities populate most environments on earth and play a critical role in ecology and human health. Their composition is thought to be largely shaped by interspecies competition for the available resources, but cooperative interactions, such as metabolite exchanges, have also been implicated in community assembly. The prevalence of metabolic interactions in microbial communities, however, has remained largely unknown. Here, we systematically survey, by using a genome-scale metabolic modeling approach, the extent of resource competition and metabolic exchanges in over 800 communities. We find that, despite marked resource competition at the level of whole assemblies, microbial communities harbor metabolically interdependent groups that recur across diverse habitats. By enumerating flux-balanced metabolic exchanges in these co-occurring subcommunities we also predict the likely exchanged metabolites, such as amino acids and sugars, that can promote group survival under nutritionally challenging conditions. Our results highlight metabolic dependencies as a major driver of species co-occurrence and hint at cooperative groups as recurring modules of microbial community architecture.


2021 ◽  
Vol 17 (11) ◽  
pp. e1009060
Author(s):  
Dafni Giannari ◽  
Cleo Hanchen Ho ◽  
Radhakrishnan Mahadevan

The study of microbial communities and their interactions has attracted the interest of the scientific community, because of their potential for applications in biotechnology, ecology and medicine. The complexity of interspecies interactions, which are key for the macroscopic behavior of microbial communities, cannot be studied easily experimentally. For this reason, the modeling of microbial communities has begun to leverage the knowledge of established constraint-based methods, which have long been used for studying and analyzing the microbial metabolism of individual species based on genome-scale metabolic reconstructions of microorganisms. A main problem of genome-scale metabolic reconstructions is that they usually contain metabolic gaps due to genome misannotations and unknown enzyme functions. This problem is traditionally solved by using gap-filling algorithms that add biochemical reactions from external databases to the metabolic reconstruction, in order to restore model growth. However, gap-filling algorithms could evolve by taking into account metabolic interactions among species that coexist in microbial communities. In this work, a gap-filling method that resolves metabolic gaps at the community level was developed. The efficacy of the algorithm was tested by analyzing its ability to resolve metabolic gaps on a synthetic community of auxotrophic Escherichia coli strains. Subsequently, the algorithm was applied to resolve metabolic gaps and predict metabolic interactions in a community of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, two species present in the human gut microbiota, and in an experimentally studied community of Dehalobacter and Bacteroidales species of the ACT-3 community. The community gap-filling method can facilitate the improvement of metabolic models and the identification of metabolic interactions that are difficult to identify experimentally in microbial communities.


2020 ◽  
Author(s):  
Zhichao Zhou ◽  
Patricia Q Tran ◽  
Adam M Breister ◽  
Yang Liu ◽  
Kristopher Kieft ◽  
...  

Abstract Background: Advances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent, however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and contributions to biogeochemical cycling. Results: We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, identification of metabolism markers, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the community, potential microbial metabolic handoffs and metabolite exchange, and calculation of microbial community contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, or from single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic transformations, and community-scale metabolic networks using a newly defined metric ‘MN-score’ (metabolic network score). METABOLIC takes ~3 hours with 40 CPU threads to process ~100 genomes and metagenomic reads within which the most compute-demanding part of hmmsearch takes ~45 mins, while it takes ~5 hours to complete hmmsearch for ~3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut.Conclusion: METABOLIC enables consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available at https://github.com/AnantharamanLab/METABOLIC under GPLv3.


2015 ◽  
Vol 112 (50) ◽  
pp. 15450-15455 ◽  
Author(s):  
Mallory Embree ◽  
Joanne K. Liu ◽  
Mahmoud M. Al-Bassam ◽  
Karsten Zengler

Microorganisms form diverse communities that have a profound impact on the environment and human health. Recent technological advances have enabled elucidation of community diversity at high resolution. Investigation of microbial communities has revealed that they often contain multiple members with complementing and seemingly redundant metabolic capabilities. An understanding of the communal impacts of redundant metabolic capabilities is currently lacking; specifically, it is not known whether metabolic redundancy will foster competition or motivate cooperation. By investigating methanogenic populations, we identified the multidimensional interspecies interactions that define composition and dynamics within syntrophic communities that play a key role in the global carbon cycle. Species-specific genomes were extracted from metagenomic data using differential coverage binning. We used metabolic modeling leveraging metatranscriptomic information to reveal and quantify a complex intertwined system of syntrophic relationships. Our results show that amino acid auxotrophies create additional interdependencies that define community composition and control carbon and energy flux through the system while simultaneously contributing to overall community robustness. Strategic use of antimicrobials further reinforces this intricate interspecies network. Collectively, our study reveals the multidimensional interactions in syntrophic communities that promote high species richness and bolster community stability during environmental perturbations.


2019 ◽  
Author(s):  
Zhichao Zhou ◽  
Patricia Q. Tran ◽  
Adam M. Breister ◽  
Yang Liu ◽  
Kristopher Kieft ◽  
...  

ABSTRACTBackgroundAdvances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent, however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and contributions to biogeochemical cycling.ResultsWe present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, identification of metabolism markers, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the community, potential microbial metabolic handoffs and metabolite exchange, and calculation of microbial community contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, or from single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic transformations, and community-scale metabolic networks using a newly defined metric ‘MN-score’ (metabolic network score). METABOLIC takes ∼3 hours with 40 CPU threads to process ∼100 genomes and metagenomic reads within which the most compute-demanding part of hmmsearch takes ∼45 mins, while it takes ∼5 hours to complete hmmsearch for ∼3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut.ConclusionMETABOLIC enables consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available at https://github.com/AnantharamanLab/METABOLIC under GPLv3.


2021 ◽  
Author(s):  
Dafni Giannari ◽  
Cleo HC Ho ◽  
Radhakrishnan Mahadevan

The study of microbial communities and their interactions has attracted the interest of the scientific community, because of their potential for applications in biotechnology, ecology and medicine. The complexity of interspecies interactions, which are key for the macroscopic behavior of microbial communities, cannot be studied easily experimentally. For this reason, the modeling of microbial communities has begun to leverage the knowledge of established constraint-based methods, which have long been used for studying and analyzing the microbial metabolism of individual species based on genome-scale metabolic reconstructions of microorganisms. A main problem of genome-scale metabolic reconstructions is that they usually contain metabolic gaps due to genome misannotations and unknown enzyme functions. This problem is traditionally solved by using gap-filling algorithms that add biochemical reactions from external databases to the metabolic reconstruction, in order to restore model growth. However, gap-filling algorithms could evolve by taking into account metabolic interactions among species that coexist in microbial communities. In this work, a gap-filling method that resolves metabolic gaps at the community level was developed. The efficacy of the algorithm was tested by analyzing its ability to resolve metabolic gaps on a synthetic community of auxotrophic Escherichia coli strains. Subsequently, the algorithm was applied to resolve metabolic gaps and predict metabolic interactions in a community of Bifidobacterium adolescentis and Faecalibacterium prausnitzii, two species present in the human gut microbiota, and in an experimentally studied community of Dehalobacter and Bacteroidales species of the ACT-3 community. The community gap-filling method can facilitate the improvement of metabolic models and the identification of metabolic interactions that are difficult to identify experimentally in microbial communities.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kazutoshi Yoshitake ◽  
Gaku Kimura ◽  
Tomoko Sakami ◽  
Tsuyoshi Watanabe ◽  
Yukiko Taniuchi ◽  
...  

AbstractAlthough numerous metagenome, amplicon sequencing-based studies have been conducted to date to characterize marine microbial communities, relatively few have employed full metagenome shotgun sequencing to obtain a broader picture of the functional features of these marine microbial communities. Moreover, most of these studies only performed sporadic sampling, which is insufficient to understand an ecosystem comprehensively. In this study, we regularly conducted seawater sampling along the northeastern Pacific coast of Japan between March 2012 and May 2016. We collected 213 seawater samples and prepared size-based fractions to generate 454 subsets of samples for shotgun metagenome sequencing and analysis. We also determined the sequences of 16S rRNA (n = 111) and 18S rRNA (n = 47) gene amplicons from smaller sample subsets. We thereafter developed the Ocean Monitoring Database for time-series metagenomic data (http://marine-meta.healthscience.sci.waseda.ac.jp/omd/), which provides a three-dimensional bird’s-eye view of the data. This database includes results of digital DNA chip analysis, a novel method for estimating ocean characteristics such as water temperature from metagenomic data. Furthermore, we developed a novel classification method that includes more information about viruses than that acquired using BLAST. We further report the discovery of a large number of previously overlooked (TAG)n repeat sequences in the genomes of marine microbes. We predict that the availability of this time-series database will lead to major discoveries in marine microbiome research.


Sign in / Sign up

Export Citation Format

Share Document