High-Resolution Generative Adversarial Neural Networks Applied to Histological Images Generation

Author(s):  
Antoni Mauricio ◽  
Jorge López ◽  
Roger Huauya ◽  
Jose Diaz
2017 ◽  
Vol 14 (4) ◽  
pp. 549-553 ◽  
Author(s):  
Grant J. Scott ◽  
Matthew R. England ◽  
William A. Starms ◽  
Richard A. Marcum ◽  
Curt H. Davis

2018 ◽  
Author(s):  
Rishi Rajalingham ◽  
Elias B. Issa ◽  
Pouya Bashivan ◽  
Kohitij Kar ◽  
Kailyn Schmidt ◽  
...  

ABSTRACTPrimates—including humans—can typically recognize objects in visual images at a glance even in the face of naturally occurring identity-preserving image transformations (e.g. changes in viewpoint). A primary neuroscience goal is to uncover neuron-level mechanistic models that quantitatively explain this behavior by predicting primate performance for each and every image. Here, we applied this stringent behavioral prediction test to the leading mechanistic models of primate vision (specifically, deep, convolutional, artificial neural networks; ANNs) by directly comparing their behavioral signatures against those of humans and rhesus macaque monkeys. Using high-throughput data collection systems for human and monkey psychophysics, we collected over one million behavioral trials for 2400 images over 276 binary object discrimination tasks. Consistent with previous work, we observed that state-of-the-art deep, feed-forward convolutional ANNs trained for visual categorization (termed DCNNIC models) accurately predicted primate patterns of object-level confusion. However, when we examined behavioral performance for individual images within each object discrimination task, we found that all tested DCNNIC models were significantly non-predictive of primate performance, and that this prediction failure was not accounted for by simple image attributes, nor rescued by simple model modifications. These results show that current DCNNIC models cannot account for the image-level behavioral patterns of primates, and that new ANN models are needed to more precisely capture the neural mechanisms underlying primate object vision. To this end, large-scale, high-resolution primate behavioral benchmarks—such as those obtained here—could serve as direct guides for discovering such models.SIGNIFICANCE STATEMENTRecently, specific feed-forward deep convolutional artificial neural networks (ANNs) models have dramatically advanced our quantitative understanding of the neural mechanisms underlying primate core object recognition. In this work, we tested the limits of those ANNs by systematically comparing the behavioral responses of these models with the behavioral responses of humans and monkeys, at the resolution of individual images. Using these high-resolution metrics, we found that all tested ANN models significantly diverged from primate behavior. Going forward, these high-resolution, large-scale primate behavioral benchmarks could serve as direct guides for discovering better ANN models of the primate visual system.


2020 ◽  
Vol 12 (5) ◽  
pp. 765 ◽  
Author(s):  
Calimanut-Ionut Cira ◽  
Ramon Alcarria ◽  
Miguel-Ángel Manso-Callejo ◽  
Francisco Serradilla

Remote sensing imagery combined with deep learning strategies is often regarded as an ideal solution for interpreting scenes and monitoring infrastructures with remarkable performance levels. In addition, the road network plays an important part in transportation, and currently one of the main related challenges is detecting and monitoring the occurring changes in order to update the existent cartography. This task is challenging due to the nature of the object (continuous and often with no clearly defined borders) and the nature of remotely sensed images (noise, obstructions). In this paper, we propose a novel framework based on convolutional neural networks (CNNs) to classify secondary roads in high-resolution aerial orthoimages divided in tiles of 256 × 256 pixels. We will evaluate the framework’s performance on unseen test data and compare the results with those obtained by other popular CNNs trained from scratch.


2020 ◽  
Vol 16 (5) ◽  
pp. 155014772092048
Author(s):  
Miguel Ángel López-Medina ◽  
Macarena Espinilla ◽  
Chris Nugent ◽  
Javier Medina Quero

The automatic detection of falls within environments where sensors are deployed has attracted considerable research interest due to the prevalence and impact of falling people, especially the elderly. In this work, we analyze the capabilities of non-invasive thermal vision sensors to detect falls using several architectures of convolutional neural networks. First, we integrate two thermal vision sensors with different capabilities: (1) low resolution with a wide viewing angle and (2) high resolution with a central viewing angle. Second, we include fuzzy representation of thermal information. Third, we enable the generation of a large data set from a set of few images using ad hoc data augmentation, which increases the original data set size, generating new synthetic images. Fourth, we define three types of convolutional neural networks which are adapted for each thermal vision sensor in order to evaluate the impact of the architecture on fall detection performance. The results show encouraging performance in single-occupancy contexts. In multiple occupancy, the low-resolution thermal vision sensor with a wide viewing angle obtains better performance and reduction of learning time, in comparison with the high-resolution thermal vision sensors with a central viewing angle.


2018 ◽  
Vol 15 (9) ◽  
pp. 1451-1455 ◽  
Author(s):  
Grant J. Scott ◽  
Kyle C. Hagan ◽  
Richard A. Marcum ◽  
James Alex Hurt ◽  
Derek T. Anderson ◽  
...  

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 190 ◽  
Author(s):  
Zhiwei Huang ◽  
Jinzhao Lin ◽  
Liming Xu ◽  
Huiqian Wang ◽  
Tong Bai ◽  
...  

The application of deep convolutional neural networks (CNN) in the field of medical image processing has attracted extensive attention and demonstrated remarkable progress. An increasing number of deep learning methods have been devoted to classifying ChestX-ray (CXR) images, and most of the existing deep learning methods are based on classic pretrained models, trained by global ChestX-ray images. In this paper, we are interested in diagnosing ChestX-ray images using our proposed Fusion High-Resolution Network (FHRNet). The FHRNet concatenates the global average pooling layers of the global and local feature extractors—it consists of three branch convolutional neural networks and is fine-tuned for thorax disease classification. Compared with the results of other available methods, our experimental results showed that the proposed model yields a better disease classification performance for the ChestX-ray 14 dataset, according to the receiver operating characteristic curve and area-under-the-curve score. An ablation study further confirmed the effectiveness of the global and local branch networks in improving the classification accuracy of thorax diseases.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Teja Kattenborn ◽  
Jana Eichel ◽  
Fabian Ewald Fassnacht

AbstractRecent technological advances in remote sensing sensors and platforms, such as high-resolution satellite imagers or unmanned aerial vehicles (UAV), facilitate the availability of fine-grained earth observation data. Such data reveal vegetation canopies in high spatial detail. Efficient methods are needed to fully harness this unpreceded source of information for vegetation mapping. Deep learning algorithms such as Convolutional Neural Networks (CNN) are currently paving new avenues in the field of image analysis and computer vision. Using multiple datasets, we test a CNN-based segmentation approach (U-net) in combination with training data directly derived from visual interpretation of UAV-based high-resolution RGB imagery for fine-grained mapping of vegetation species and communities. We demonstrate that this approach indeed accurately segments and maps vegetation species and communities (at least 84% accuracy). The fact that we only used RGB imagery suggests that plant identification at very high spatial resolutions is facilitated through spatial patterns rather than spectral information. Accordingly, the presented approach is compatible with low-cost UAV systems that are easy to operate and thus applicable to a wide range of users.


Sign in / Sign up

Export Citation Format

Share Document