scholarly journals Fusion High-Resolution Network for Diagnosing ChestX-ray Images

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 190 ◽  
Author(s):  
Zhiwei Huang ◽  
Jinzhao Lin ◽  
Liming Xu ◽  
Huiqian Wang ◽  
Tong Bai ◽  
...  

The application of deep convolutional neural networks (CNN) in the field of medical image processing has attracted extensive attention and demonstrated remarkable progress. An increasing number of deep learning methods have been devoted to classifying ChestX-ray (CXR) images, and most of the existing deep learning methods are based on classic pretrained models, trained by global ChestX-ray images. In this paper, we are interested in diagnosing ChestX-ray images using our proposed Fusion High-Resolution Network (FHRNet). The FHRNet concatenates the global average pooling layers of the global and local feature extractors—it consists of three branch convolutional neural networks and is fine-tuned for thorax disease classification. Compared with the results of other available methods, our experimental results showed that the proposed model yields a better disease classification performance for the ChestX-ray 14 dataset, according to the receiver operating characteristic curve and area-under-the-curve score. An ablation study further confirmed the effectiveness of the global and local branch networks in improving the classification accuracy of thorax diseases.

PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242013
Author(s):  
Hongyu Wang ◽  
Hong Gu ◽  
Pan Qin ◽  
Jia Wang

Background Pneumothorax can lead to a life-threatening emergency. The experienced radiologists can offer precise diagnosis according to the chest radiographs. The localization of the pneumothorax lesions will help to quickly diagnose, which will be benefit for the patients in the underdevelopment areas lack of the experienced radiologists. In recent years, with the development of large neural network architectures and medical imaging datasets, deep learning methods have become a methodology of choice for analyzing medical images. The objective of this study was to the construct convolutional neural networks to localize the pneumothorax lesions in chest radiographs. Methods and findings We developed a convolutional neural network, called CheXLocNet, for the segmentation of pneumothorax lesions. The SIIM-ACR Pneumothorax Segmentation dataset was used to train and validate CheXLocNets. The training dataset contained 2079 radiographs with the annotated lesion areas. We trained six CheXLocNets with various hyperparameters. Another 300 annotated radiographs were used to select parameters of these CheXLocNets as the validation set. We determined the optimal parameters by the AP50 (average precision at the intersection over union (IoU) equal to 0.50), a segmentation evaluation metric used by several well-known competitions. Then CheXLocNets were evaluated by a test set (1082 normal radiographs and 290 disease radiographs), based on the classification metrics: area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and positive predictive value (PPV); segmentation metrics: IoU and Dice score. For the classification, CheXLocNet with best sensitivity produced an AUC of 0.87, sensitivity of 0.78 (95% CI 0.73-0.83), and specificity of 0.78 (95% CI 0.76-0.81). CheXLocNet with best specificity produced an AUC of 0.79, sensitivity of 0.46 (95% CI 0.40-0.52), and specificity of 0.92 (95% CI 0.90-0.94). For the segmentation, CheXLocNet with best sensitivity produced an IoU of 0.69 and Dice score of 0.72. CheXLocNet with best specificity produced an IoU of 0.77 and Dice score of 0.79. We combined them to form an ensemble CheXLocNet. The ensemble CheXLocNet produced an IoU of 0.81 and Dice score of 0.82. Our CheXLocNet succeeded in automatically detecting pneumothorax lesions, without any human guidance. Conclusions In this study, we proposed a deep learning network, called, CheXLocNet, for the automatic segmentation of chest radiographs to detect pneumothorax. Our CheXLocNets generated accurate classification results and high-quality segmentation masks for the pneumothorax at the same time. This technology has the potential to improve healthcare delivery and increase access to chest radiograph expertise for the detection of diseases. Furthermore, the segmentation results can offer comprehensive geometric information of lesions, which can benefit monitoring the sequential development of lesions with high accuracy. Thus, CheXLocNets can be further extended to be a reliable clinical decision support tool. Although we used transfer learning in training CheXLocNet, the parameters of CheXLocNet was still large for the radiograph dataset. Further work is necessary to prune CheXLocNet suitable for the radiograph dataset.


2019 ◽  
Vol 277 ◽  
pp. 02024 ◽  
Author(s):  
Lincan Li ◽  
Tong Jia ◽  
Tianqi Meng ◽  
Yizhe Liu

In this paper, an accurate two-stage deep learning method is proposed to detect vulnerable plaques in ultrasonic images of cardiovascular. Firstly, a Fully Convonutional Neural Network (FCN) named U-Net is used to segment the original Intravascular Optical Coherence Tomography (IVOCT) cardiovascular images. We experiment on different threshold values to find the best threshold for removing noise and background in the original images. Secondly, a modified Faster RCNN is adopted to do precise detection. The modified Faster R-CNN utilize six-scale anchors (122,162,322,642,1282,2562) instead of the conventional one scale or three scale approaches. First, we present three problems in cardiovascular vulnerable plaque diagnosis, then we demonstrate how our method solve these problems. The proposed method in this paper apply deep convolutional neural networks to the whole diagnostic procedure. Test results show the Recall rate, Precision rate, IoU (Intersection-over-Union) rate and Total score are 0.94, 0.885, 0.913 and 0.913 respectively, higher than the 1st team of CCCV2017 Cardiovascular OCT Vulnerable Plaque Detection Challenge. AP of the designed Faster RCNN is 83.4%, higher than conventional approaches which use one-scale or three-scale anchors. These results demonstrate the superior performance of our proposed method and the power of deep learning approaches in diagnose cardiovascular vulnerable plaques.


2017 ◽  
Vol 14 (4) ◽  
pp. 549-553 ◽  
Author(s):  
Grant J. Scott ◽  
Matthew R. England ◽  
William A. Starms ◽  
Richard A. Marcum ◽  
Curt H. Davis

Author(s):  
Sheng Shen ◽  
M. K. Sadoughi ◽  
Xiangyi Chen ◽  
Mingyi Hong ◽  
Chao Hu

Over the past two decades, safety and reliability of lithium-ion (Li-ion) rechargeable batteries have been receiving a considerable amount of attention from both industry and academia. To guarantee safe and reliable operation of a Li-ion battery pack and build failure resilience in the pack, battery management systems (BMSs) should possess the capability to monitor, in real time, the state of health (SOH) of the individual cells in the pack. This paper presents a deep learning method, named deep convolutional neural networks, for cell-level SOH assessment based on the capacity, voltage, and current measurements during a charge cycle. The unique features of deep convolutional neural networks include the local connectivity and shared weights, which enable the model to estimate battery capacity accurately using the measurements during charge. To our knowledge, this is the first attempt to apply deep learning to online SOH assessment of Li-ion battery. 10-year daily cycling data from implantable Li-ion cells are used to verify the performance of the proposed method. Compared with traditional machine learning methods such as relevance vector machine and shallow neural networks, the proposed method is demonstrated to produce higher accuracy and robustness in capacity estimation.


2020 ◽  
Vol 12 (5) ◽  
pp. 765 ◽  
Author(s):  
Calimanut-Ionut Cira ◽  
Ramon Alcarria ◽  
Miguel-Ángel Manso-Callejo ◽  
Francisco Serradilla

Remote sensing imagery combined with deep learning strategies is often regarded as an ideal solution for interpreting scenes and monitoring infrastructures with remarkable performance levels. In addition, the road network plays an important part in transportation, and currently one of the main related challenges is detecting and monitoring the occurring changes in order to update the existent cartography. This task is challenging due to the nature of the object (continuous and often with no clearly defined borders) and the nature of remotely sensed images (noise, obstructions). In this paper, we propose a novel framework based on convolutional neural networks (CNNs) to classify secondary roads in high-resolution aerial orthoimages divided in tiles of 256 × 256 pixels. We will evaluate the framework’s performance on unseen test data and compare the results with those obtained by other popular CNNs trained from scratch.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Yang-Ming Lin ◽  
Ching-Tai Chen ◽  
Jia-Ming Chang

Abstract Background Tandem mass spectrometry allows biologists to identify and quantify protein samples in the form of digested peptide sequences. When performing peptide identification, spectral library search is more sensitive than traditional database search but is limited to peptides that have been previously identified. An accurate tandem mass spectrum prediction tool is thus crucial in expanding the peptide space and increasing the coverage of spectral library search. Results We propose MS2CNN, a non-linear regression model based on deep convolutional neural networks, a deep learning algorithm. The features for our model are amino acid composition, predicted secondary structure, and physical-chemical features such as isoelectric point, aromaticity, helicity, hydrophobicity, and basicity. MS2CNN was trained with five-fold cross validation on a three-way data split on the large-scale human HCD MS2 dataset of Orbitrap LC-MS/MS downloaded from the National Institute of Standards and Technology. It was then evaluated on a publicly available independent test dataset of human HeLa cell lysate from LC-MS experiments. On average, our model shows better cosine similarity and Pearson correlation coefficient (0.690 and 0.632) than MS2PIP (0.647 and 0.601) and is comparable with pDeep (0.692 and 0.642). Notably, for the more complex MS2 spectra of 3+ peptides, MS2PIP is significantly better than both MS2PIP and pDeep. Conclusions We showed that MS2CNN outperforms MS2PIP for 2+ and 3+ peptides and pDeep for 3+ peptides. This implies that MS2CNN, the proposed convolutional neural network model, generates highly accurate MS2 spectra for LC-MS/MS experiments using Orbitrap machines, which can be of great help in protein and peptide identifications. The results suggest that incorporating more data for deep learning model may improve performance.


2020 ◽  
Vol 25 (6) ◽  
pp. 553-565 ◽  
Author(s):  
Boran Sekeroglu ◽  
Ilker Ozsahin

The detection of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), which is responsible for coronavirus disease 2019 (COVID-19), using chest X-ray images has life-saving importance for both patients and doctors. In addition, in countries that are unable to purchase laboratory kits for testing, this becomes even more vital. In this study, we aimed to present the use of deep learning for the high-accuracy detection of COVID-19 using chest X-ray images. Publicly available X-ray images (1583 healthy, 4292 pneumonia, and 225 confirmed COVID-19) were used in the experiments, which involved the training of deep learning and machine learning classifiers. Thirty-eight experiments were performed using convolutional neural networks, 10 experiments were performed using five machine learning models, and 14 experiments were performed using the state-of-the-art pre-trained networks for transfer learning. Images and statistical data were considered separately in the experiments to evaluate the performances of models, and eightfold cross-validation was used. A mean sensitivity of 93.84%, mean specificity of 99.18%, mean accuracy of 98.50%, and mean receiver operating characteristics–area under the curve scores of 96.51% are achieved. A convolutional neural network without pre-processing and with minimized layers is capable of detecting COVID-19 in a limited number of, and in imbalanced, chest X-ray images.


Sign in / Sign up

Export Citation Format

Share Document