Impact of Landfill Leachate Organics on the Behavior of Heavy Metals in Groundwater

Author(s):  
Irina Galitskaya ◽  
Vera Putilina ◽  
Irina Kostikova ◽  
Tatiana Yuganova
2021 ◽  
Vol 11 (11) ◽  
pp. 5009
Author(s):  
Mayk Teles de Oliveira ◽  
Ieda Maria Sapateiro Torres ◽  
Humberto Ruggeri ◽  
Paulo Scalize ◽  
Antonio Albuquerque ◽  
...  

Sanitary landfill leachate (LL) composition varies according to climate variables variation, solid waste characteristics and composition, and landfill age. Leachate treatment is essentially carried out trough biological and physicochemical processes, which have showed variability in efficiency and appear a costly solution for the management authorities. Electrocoagulation (EC) seems a suitable solution for leachate treatment taking into account the characteristics of the liquor. One of the problems of EC is the electrode passivation, which affects the longevity of the process. One solution to this problem could be the replacement of the electrode by one made of recyclable material, which would make it possible to change it frequently and at a lower cost. The objective of the present work was to evaluate the removal of heavy metals (As, Ba, Cd, Cr, Cu, Fe, Pb, Mn, Ni, Se and Zn) and coliforms from a LL by EC using electrodes made from steel swarf (SfE) up to 8 h. Removal efficiencies of detected heavy metals were 51%(Cr), 59%(As), 71%(Cd), 72%(Zn), 92%(Ba), 95%(Ni) and >99%(Pb). The microbial load of coliforms in leachate was reduced from 10.76 × 104 CFU/mL (raw leachate) to less than 1 CFU/mL (after treatment with SfE) (i.e., approximately 100% reduction). The use of SfE in EC of LL is very effective in removing heavy metals and coliforms and can be used as alternative treatment solution for such effluents.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Fauzul Imron ◽  
Setyo Budi Kurniawan ◽  
Siti Rozaimah Sheikh Abdullah

AbstractLeachate is produced from sanitary landfills containing various pollutants, including heavy metals. This study aimed to determine the resistance of bacteria isolated from non-active sanitary landfill leachate to various heavy metals and the effect of salinity levels on the removal of Hg by the isolated bacterium. Four dominant bacteria from approximately 33 × 1017 colony-forming units per mL identified as Vibrio damsela, Pseudomonas aeruginosa, Pseudomonas stutzeri, and Pseudomonas fluorescens were isolated from non-active sanitary landfill leachate. Heavy metal resistance test was conducted for Hg, Cd, Pb, Mg, Zn, Fe, Mn, and Cu (0–20 mg L− 1). The removal of the most toxic heavy metals by the most resistant bacteria was also determined at different salinity levels, i.e., fresh water (0‰), marginal water (10‰), brackish water (20‰), and saline water (30‰). Results showed that the growth of these bacteria is promoted by Fe, Mn, and Cu, but inhibited by Hg, Cd, Pb, Mg, and Zn. The minimum inhibitory concentration (MIC) of all the bacteria in Fe, Mn, and Cu was > 20 mg L− 1. The MIC of V. damsela was 5 mg L− 1 for Hg and >  20 mg L− 1 for Cd, Pb, Mg, and Zn. For P. aeruginosa, MIC was > 20 mg L− 1 for Cd, Pb, Mg, and Zn and 10 mg L− 1 for Hg. Meanwhile, the MIC of P. stutzeri was > 20 mg L− 1 for Pb, Mg, and Zn and 5 mg L− 1 for Hg and Cd. The MIC of P. fluorescens for Hg, Pb, Mg, and Zn was 5, 5, 15, and 20 mg L− 1, respectively, and that for Cd was > 20 mg L− 1. From the MIC results, Hg is the most toxic heavy metal. In marginal water (10‰), P. aeruginosa FZ-2 removed up to 99.7% Hg compared with that in fresh water (0‰), where it removed only 54% for 72 h. Hence, P. aeruginosa FZ-2 is the most resistant to heavy metals, and saline condition exerts a positive effect on bacteria in removing Hg.


2008 ◽  
Vol 8 (8) ◽  
pp. 1383-1394 ◽  
Author(s):  
Udomporn Chuangcham ◽  
Wanpen Wirojanagu ◽  
Punya Charusiri . ◽  
William Milne-Home ◽  
Rungruang Lertsirivo

2019 ◽  
pp. 325-333
Author(s):  
Lena Johansson Westholm

Heavy metals are commonly occurring in landfill leachate and in order to achieve theenvironmental goal about a non-toxic environment adopted by the Swedish Parliament, theleachate must be treated before being discharged into a nearby surface or groundwater body.There are several technical treatment options based on chemical, biological or physicalprocesses. Examples of these techniques are the SBR technique, oxidation and membranefiltration. These treatment methods are not always suitable at all landfill sites due toeconomical and/or technical constraints. Other treatment methods have therefore attractedattention. These methods, often natural based such as constructed wetland systems, are moreadapted to small landfill sites where high-tech and cost-demanding alternatives are not anoption. One natural based method that has attracted attention for leachate treatment in recentyears is the filter technique. It is based on the passage of a polluted water flow through a filtermedia with properties suitable for retention of heavy metals or other pollutants. A largenumber of different filter materials have been investigated with regard to their metal sorptioncapacity. The majority of these studies have been carried out in laboratory experiments ofdifferent kinds. Industrial by-products such as blast furnace slag and pine bark are filtermaterials that have been considered interesting for metal removal from landfill leachate. Aseries of laboratory experiments carried out as batch tests have therefore been conducted inorder to learn more about the potential of these filter materials to remove heavy metals fromlandfill leachate.


2019 ◽  
Vol 54 (3) ◽  
pp. 230-241 ◽  
Author(s):  
Filip Gamoń ◽  
Mariusz Tomaszewski ◽  
Aleksandra Ziembińska-Buczyńska

Abstract The exacerbated production of solid residues represents a major problem in the management and handling of urban wastes. The by-product of stored municipal and industrial solid waste production is landfill leachate. Leachate is characterized by a high concentration of organic compounds, ammonia, and the presence of heavy metals. Because of its composition, this kind of wastewater can cause serious environmental pollution and should be treated to reduce its toxic effects. Increasingly, the interest is directed to the application of the ANAMMOX (anaerobic ammonium oxidation) process for the landfill leachate treatment. In this study, for the first time, the effect of treatment with the ANAMMOX process on the toxicity of leachate was investigated. Based on the research performed in this study, it could be stated that the untreated landfill leachate from the municipal landfill and the influent of the ANAMMOX reactor present phytotoxicity to Lemna minor, due to a correlation of high concentrations of organic compounds, heavy metals, such as Cd2+, Cu2+, Zn2+, and the presence of an unionized form of ammonia (NH3). The results of the Allium cepa test demonstrated that the treatment was not efficient in eliminating the genotoxic substances that are responsible for the mutagenic potential in the effluent. This article has been made Open Access thanks to the kind support of CAWQ/ACQE (https://www.cawq.ca).


Sign in / Sign up

Export Citation Format

Share Document