Realizing Soft High Torque Actuators for Complete Assistance Wearable Robots

Author(s):  
Allan J. Veale ◽  
Kyrian Staman ◽  
Herman van der Kooij
Keyword(s):  
2007 ◽  
Author(s):  
Michael K. McBeath ◽  
Flavio DaSilva ◽  
Thomas G. Sugar ◽  
Nancy E. Wechsler ◽  
James Koeneman

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1381-1389
Author(s):  
Dezhi Chen ◽  
Chengwu Diao ◽  
Zhiyu Feng ◽  
Shichong Zhang ◽  
Wenliang Zhao

In this paper, a novel dual-stator permanent magnet machine (DsPmSynM) with low cost and high torque density is designed. The winding part of the DsPmSynM adopts phase-group concentrated-coil windings, and the permanent magnets are arranged by spoke-type. Firstly, the winding structure reduces the amount of copper at the end of the winding. Secondly, the electromagnetic torque ripple of DsPmSynM is suppressed by reducing the cogging torque. Furthermore, the dynamic performance of DsPmSynM is studied. Finally, the experimental results are compared with the simulation results.


Alloy Digest ◽  
1954 ◽  
Vol 3 (2) ◽  

Abstract BELMALLOY is a high grade pearlitic malleable iron providing rigidity and shock resistance to high torque loads. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: CI-6. Producer or source: Belle City Malleable Iron Company.


2021 ◽  
pp. 107110072110031
Author(s):  
Ryan O’Leary ◽  
Ian M. Foran ◽  
David J. Dalstrom

Level of Evidence: Level V, expert opinion.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2157
Author(s):  
Kevin Langlois ◽  
Ellen Roels ◽  
Gabriël Van De Velde ◽  
Cláudia Espadinha ◽  
Christopher Van Vlerken ◽  
...  

Sensing pressure at the physical interface between the robot and the human has important implications for wearable robots. On the one hand, monitoring pressure distribution can give valuable benefits on the aspects of comfortability and safety of such devices. Additionally, on the other hand, they can be used as a rich sensory input to high level interaction controllers. However, a problem is that the commercial availability of this technology is mostly limited to either low-cost solutions with poor performance or expensive options, limiting the possibilities for iterative designs. As an alternative, in this manuscript we present a three-dimensional (3D) printed flexible capacitive pressure sensor that allows seamless integration for wearable robotic applications. The sensors are manufactured using additive manufacturing techniques, which provides benefits in terms of versatility of design and implementation. In this study, a characterization of the 3D printed sensors in a test-bench is presented after which the sensors are integrated in an upper arm interface. A human-in-the-loop calibration of the sensors is then shown, allowing to estimate the external force and pressure distribution that is acting on the upper arm of seven human subjects while performing a dynamic task. The validation of the method is achieved by means of a collaborative robot for precise force interaction measurements. The results indicate that the proposed sensors are a potential solution for further implementation in human–robot interfaces.


Author(s):  
Yuanzhi Zhang ◽  
Dawei Li ◽  
Peng Yan ◽  
Xiang Ren ◽  
Ronghai Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document