Human-in-the-loop optimization of wearable robots to reduce the human metabolic energy cost in physical movements

2020 ◽  
Vol 127 ◽  
pp. 103495
Author(s):  
Jing Fang ◽  
Yuan Yuan
2020 ◽  
Author(s):  
Yanggan Feng ◽  
Chengqiang Mao ◽  
Qining Wang

AbstractGait asymmetry due to the loss of unilateral limb increases the risk of injury or progressive joint degeneration. The development of wearable robotic devices paves a way to improve gait symmetry of unilateral amputees. Moreover, the state-of-the-art studies on human-in-the-loop optimization strategies through decreasing the metabolic cost as the optimization task, have met several challenges, e.g. too long period of optimization and the optimization feasibility for unilateral amputees who have the deficit of gait symmetry. Here, in this paper, we proposed gait-symmetry-based human-in-the-loop optimization method to decrease the risk of injury or progressive joint degeneration for unilateral transtibial amputees. The experimental results (N = 3 unilateral transtibial subjects) demonstrate that only average 9.0±4.1min of convergence was taken. Compared to gait symmetry while wearing prosthetics, after optimization, the gait symmetry indicator value of the subjects wearing the robotic prostheses was improved by 21.0% and meanwhile the net metabolic energy consumption value was reduced by 9.2%. Also, this paper explores the rationality of gait indicators and what kind of gait indicators are the optimization target. These results suggest that gait-symmetry-based human-in-the-loop strategy could pave a practical way to improve gait symmetry by accompanying the reduction of metabolic cost, and thus to decrease the risk of joint injury for the unilateral amputees.


2021 ◽  
Vol 2 ◽  
Author(s):  
Patrick W. Franks ◽  
Gwendolyn M. Bryan ◽  
Russell M. Martin ◽  
Ricardo Reyes ◽  
Ava C. Lakmazaheri ◽  
...  

Abstract Exoskeletons that assist the hip, knee, and ankle joints have begun to improve human mobility, particularly by reducing the metabolic cost of walking. However, direct comparisons of optimal assistance of these joints, or their combinations, have not yet been possible. Assisting multiple joints may be more beneficial than the sum of individual effects, because muscles often span multiple joints, or less effective, because single-joint assistance can indirectly aid other joints. In this study, we used a hip–knee–ankle exoskeleton emulator paired with human-in-the-loop optimization to find single-joint, two-joint, and whole-leg assistance that maximally reduced the metabolic cost of walking. Hip-only and ankle-only assistance reduced the metabolic cost of walking by 26 and 30% relative to walking in the device unassisted, confirming that both joints are good targets for assistance (N = 3). Knee-only assistance reduced the metabolic cost of walking by 13%, demonstrating that effective knee assistance is possible (N = 3). Two-joint assistance reduced the metabolic cost of walking by between 33 and 42%, with the largest improvements coming from hip-ankle assistance (N = 3). Assisting all three joints reduced the metabolic cost of walking by 50%, showing that at least half of the metabolic energy expended during walking can be saved through exoskeleton assistance (N = 4). Changes in kinematics and muscle activity indicate that single-joint assistance indirectly assisted muscles at other joints, such that the improvement from whole-leg assistance was smaller than the sum of its single-joint parts. Exoskeletons can assist the entire limb for maximum effect, but a single well-chosen joint can be more efficient when considering additional factors such as weight and cost.


Robotica ◽  
2019 ◽  
Vol 37 (12) ◽  
pp. 2011-2013
Author(s):  
Qining Wang ◽  
Nicola Vitiello ◽  
Samer Mohammed ◽  
Sunil Agrawal

While initially conceived for human motion augmentation, wearable robots have gradually evolved as technological aids in motion assistance and rehabilitation. There are increasing real-world applications in industrial and medical scenarios. Though efforts have been made on wearable robotic systems, e.g. robotic prostheses and exoskeletons, there are still several challenges in kinematics and actuation solutions, dynamic analysis and control of human-robot systems, neuro-control and human-robot interfaces; ergonomics and human-in-the-loop optimization. Meanwhile, real-world applications in industrial or medical scenarios are facing difficulties considering effectiveness.


2021 ◽  
Author(s):  
Patrick W. Franks ◽  
Gwendolyn M. Bryan ◽  
Russell M. Martin ◽  
Ricardo Reyes ◽  
Steven H. Collins

Exoskeletons that assist the hip, knee, and ankle joints have begun to improve human mobility, particularly by reducing the metabolic cost of walking. However, direct comparisons of optimal assistance of these joints, or their combinations, have not yet been possible. Assisting multiple joints may be more beneficial than the sum of individual effects, because muscles often span multiple joints, or less effective, because single-joint assistance can indirectly aid other joints. In this study, we used a hip-knee-ankle exoskeleton emulator paired with human-in-the-loop optimization to find single-joint, two-joint, and whole-leg assistance that maximally reduced the metabolic cost of walking for three participants. Hip-only and ankle-only assistance reduced the metabolic cost of walking by 26% and 30% relative to walking in the device unassisted, confirming that both joints are good targets for assistance. Knee-only assistance reduced the metabolic cost of walking by 13%, demonstrating that effective knee assistance is possible. Two-joint assistance reduced the metabolic cost of walking by between 34% and 42%, with the largest improvements coming from hip-ankle assistance. Assisting all three joints reduced the metabolic cost of walking by 50%, showing that at least half of the metabolic energy expended during walking can be saved through exoskeleton assistance. Changes in kinematics and muscle activity indicate that single-joint assistance indirectly assisted muscles at other joints, such that the improvement from whole-leg assistance was smaller than the sum of its single-joint parts. Exoskeletons can assist the entire limb for maximum effect, but a single well-chosen joint can be more efficient when considering additional factors such as weight and cost.


1998 ◽  
Vol 274 (3) ◽  
pp. E397-E402 ◽  
Author(s):  
Michael C. Hogan ◽  
Erica Ingham ◽  
S. Sadi Kurdak

It has been suggested that during a skeletal muscle contraction the metabolic energy cost at the onset may be greater than the energy cost related to holding steady-state force. The purpose of the present study was to investigate the effect of contraction duration on the metabolic energy cost and fatigue process in fully perfused contracting muscle in situ. Canine gastrocnemius muscle ( n = 6) was isolated, and two contractile periods (3 min of isometric, tetanic contractions with 45-min rest between) were conducted by each muscle in a balanced order design. The two contractile periods had stimulation patterns that resulted in a 1:3 contraction-to-rest ratio, with the difference in the two contractile periods being in the duration of each contraction: short duration 0.25-s stimulation/0.75-s rest vs. long duration 1-s stimulation/3-s rest. These stimulation patterns resulted in the same total time of stimulation, number of stimulation pulses, and total time in contraction for each 3-min period. Muscle O2 uptake, the fall in developed force (fatigue), the O2 cost of developed force, and the estimated total energy cost (ATP utilization) of developed force were significantly greater ( P < 0.05) with contractions of short duration. Lactate efflux from the working muscle and muscle lactate concentration were significantly greater with contractions of short duration, such that the calculated energy derived from glycolysis was three times greater in this condition. These results demonstrate that contraction duration can significantly affect both the aerobic and anaerobic metabolic energy cost and fatigue in contracting muscle. In addition, it is likely that the greater rate of fatigue with more rapid contractions was a result of elevated glycolytic production of lactic acid.


Author(s):  
K. Eftekhari Shahroudi

Despite their seemingly impressive claims, current products for Condition Monitoring, Diagnostic and Decision Support Systems (CMD&D) do not provide the reliable bottom line information that end users and operators need. Instead they confuse the issue with gigabytes of logged trends, complex cause-effect matrices, fault signatures etc. The term “Intelligent Health Control” here refers to the next generation of such systems which provide usable information on: • the existence and severity of faults; • how their severity will progress with utilization; • how this progress can be influenced or controlled. In this paper the fundamental shortcomings of current approaches are discussed prior to introducing the basics of Intelligent Health Control in terms of fault models and how they can be used to close the diagnostic, prognostic and intelligent control triangle. The industry will unavoidably shift towards an “information centric” view from the currently predominant “data centric” view. Gigabytes of performance trends will no longer be relevant. Instead, reliable bottom line information will be required on how to minimize or control the costs associated with machinery health degradation or faults. In order to keep the discussion real, the current state of the art of enabling technologies are discussed, including: • Open Information Buses; • Adding real time data server functionality to the control system; • Computational Steering, Human-in-the-Loop Optimization (or semi-automatic problem solving); • Fault Models; • Faster than real time simulation; • Neural Nets.


2019 ◽  
Vol 57 (3) ◽  
pp. 283-305 ◽  
Author(s):  
Konstantina P. POULIANITI ◽  
George HAVENITH ◽  
Andreas D. FLOURIS
Keyword(s):  

2021 ◽  
Vol 17 (11) ◽  
pp. e1009608
Author(s):  
Ryan T. Schroeder ◽  
Arthur D. Kuo

The energetic economy of running benefits from tendon and other tissues that store and return elastic energy, thus saving muscles from costly mechanical work. The classic “Spring-mass” computational model successfully explains the forces, displacements and mechanical power of running, as the outcome of dynamical interactions between the body center of mass and a purely elastic spring for the leg. However, the Spring-mass model does not include active muscles and cannot explain the metabolic energy cost of running, whether on level ground or on a slope. Here we add explicit actuation and dissipation to the Spring-mass model, and show how they explain substantial active (and thus costly) work during human running, and much of the associated energetic cost. Dissipation is modeled as modest energy losses (5% of total mechanical energy for running at 3 m s-1) from hysteresis and foot-ground collisions, that must be restored by active work each step. Even with substantial elastic energy return (59% of positive work, comparable to empirical observations), the active work could account for most of the metabolic cost of human running (about 68%, assuming human-like muscle efficiency). We also introduce a previously unappreciated energetic cost for rapid production of force, that helps explain the relatively smooth ground reaction forces of running, and why muscles might also actively perform negative work. With both work and rapid force costs, the model reproduces the energetics of human running at a range of speeds on level ground and on slopes. Although elastic return is key to energy savings, there are still losses that require restorative muscle work, which can cost substantial energy during running.


2013 ◽  
Vol 38 (1) ◽  
pp. 5-11 ◽  
Author(s):  
Benjamin J Darter ◽  
Jason M Wilken

Background:Technological advances in prosthetic design include the use of microprocessors that adapt device performance based on user motion. The Proprio ankle unit prepositions the foot to adjust for walking on slopes and increases foot clearance during swing to minimize gait deviations.Study design:Comparative analysis.Objectives:To investigate the effect of a prosthesis with adaptive ankle motion on physiological gait performance during slope walking.Methods:Six persons with a unilateral transtibial amputation completed treadmill walking tests at three slopes (−5°, 0°, and 5°). The participants were tested wearing a customary device, active Proprio (Pon), and an identical inactivated Proprio (Poff).Results:Metabolic energy expenditure, energy cost for walking, and rating of walking difficulty were not statistically different between the Pon and Poff for all tested slopes. However, for slope descent, energy expenditure and energy cost for walking improved significantly by an average of 10%–14% for both the Pon and Poff compared to the customary limb. Rating of walking difficulty also showed an improvement with slope descent for both the Pon and Poff compared to the customary device. An improvement with slope ascent was found for Pon compared to the customary limb only.Conclusions:Adaptive ankle motion provided no meaningful physiological benefit during slope walking. The Proprio was, however, less demanding than the customary device for slope descent. Differences in the mechanical properties of the prosthetic feet likely contributed to the changes.Clinical relevanceWhile the adaptive ankle motion did not affect metabolic energy expenditure or energy cost for walking, the results suggest close attention should be paid to the mechanical properties of the foot component. Assessment of gait on nonlevel surfaces is recommended to better understand the implications of different prosthetic design features.


2018 ◽  
Vol 3 (6) ◽  
pp. 78-80 ◽  
Author(s):  
Conor Walsh

Sign in / Sign up

Export Citation Format

Share Document