Automatic Vertebra Labeling in Large-Scale Medical Images Using Deep Image-to-Image Network with Message Passing and Sparsity Regularization

Author(s):  
Dong Yang ◽  
Tao Xiong ◽  
Daguang Xu
Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1384
Author(s):  
Yin Dai ◽  
Yifan Gao ◽  
Fayu Liu

Over the past decade, convolutional neural networks (CNN) have shown very competitive performance in medical image analysis tasks, such as disease classification, tumor segmentation, and lesion detection. CNN has great advantages in extracting local features of images. However, due to the locality of convolution operation, it cannot deal with long-range relationships well. Recently, transformers have been applied to computer vision and achieved remarkable success in large-scale datasets. Compared with natural images, multi-modal medical images have explicit and important long-range dependencies, and effective multi-modal fusion strategies can greatly improve the performance of deep models. This prompts us to study transformer-based structures and apply them to multi-modal medical images. Existing transformer-based network architectures require large-scale datasets to achieve better performance. However, medical imaging datasets are relatively small, which makes it difficult to apply pure transformers to medical image analysis. Therefore, we propose TransMed for multi-modal medical image classification. TransMed combines the advantages of CNN and transformer to efficiently extract low-level features of images and establish long-range dependencies between modalities. We evaluated our model on two datasets, parotid gland tumors classification and knee injury classification. Combining our contributions, we achieve an improvement of 10.1% and 1.9% in average accuracy, respectively, outperforming other state-of-the-art CNN-based models. The results of the proposed method are promising and have tremendous potential to be applied to a large number of medical image analysis tasks. To our best knowledge, this is the first work to apply transformers to multi-modal medical image classification.


2020 ◽  
Vol 34 (07) ◽  
pp. 11693-11700 ◽  
Author(s):  
Ao Luo ◽  
Fan Yang ◽  
Xin Li ◽  
Dong Nie ◽  
Zhicheng Jiao ◽  
...  

Crowd counting is an important yet challenging task due to the large scale and density variation. Recent investigations have shown that distilling rich relations among multi-scale features and exploiting useful information from the auxiliary task, i.e., localization, are vital for this task. Nevertheless, how to comprehensively leverage these relations within a unified network architecture is still a challenging problem. In this paper, we present a novel network structure called Hybrid Graph Neural Network (HyGnn) which targets to relieve the problem by interweaving the multi-scale features for crowd density as well as its auxiliary task (localization) together and performing joint reasoning over a graph. Specifically, HyGnn integrates a hybrid graph to jointly represent the task-specific feature maps of different scales as nodes, and two types of relations as edges: (i) multi-scale relations capturing the feature dependencies across scales and (ii) mutual beneficial relations building bridges for the cooperation between counting and localization. Thus, through message passing, HyGnn can capture and distill richer relations between nodes to obtain more powerful representations, providing robust and accurate results. Our HyGnn performs significantly well on four challenging datasets: ShanghaiTech Part A, ShanghaiTech Part B, UCF_CC_50 and UCF_QNRF, outperforming the state-of-the-art algorithms by a large margin.


Author(s):  
Alan Gray ◽  
Kevin Stratford

Leading high performance computing systems achieve their status through use of highly parallel devices such as NVIDIA graphics processing units or Intel Xeon Phi many-core CPUs. The concept of performance portability across such architectures, as well as traditional CPUs, is vital for the application programmer. In this paper we describe targetDP, a lightweight abstraction layer which allows grid-based applications to target data parallel hardware in a platform agnostic manner. We demonstrate the effectiveness of our pragmatic approach by presenting performance results for a complex fluid application (with which the model was co-designed), plus separate lattice quantum chromodynamics particle physics code. For each application, a single source code base is seen to achieve portable performance, as assessed within the context of the Roofline model. TargetDP can be combined with Message Passing Interface (MPI) to allow use on systems containing multiple nodes: we demonstrate this through provision of scaling results on traditional and graphics processing unit-accelerated large scale supercomputers.


1993 ◽  
Vol 2 (4) ◽  
pp. 133-144 ◽  
Author(s):  
Jon B. Weissman ◽  
Andrew S. Grimshaw ◽  
R.D. Ferraro

The conventional wisdom in the scientific computing community is that the best way to solve large-scale numerically intensive scientific problems on today's parallel MIMD computers is to use Fortran or C programmed in a data-parallel style using low-level message-passing primitives. This approach inevitably leads to nonportable codes and extensive development time, and restricts parallel programming to the domain of the expert programmer. We believe that these problems are not inherent to parallel computing but are the result of the programming tools used. We will show that comparable performance can be achieved with little effort if better tools that present higher level abstractions are used. The vehicle for our demonstration is a 2D electromagnetic finite element scattering code we have implemented in Mentat, an object-oriented parallel processing system. We briefly describe the application. Mentat, the implementation, and present performance results for both a Mentat and a hand-coded parallel Fortran version.


2016 ◽  
Author(s):  
Shaun D Jackman ◽  
Benjamin P Vandervalk ◽  
Hamid Mohamadi ◽  
Justin Chu ◽  
Sarah Yeo ◽  
...  

AbstractThe assembly of DNA sequences de novo is fundamental to genomics research. It is the first of many steps towards elucidating and characterizing whole genomes. Downstream applications, including analysis of genomic variation between species, between or within individuals critically depends on robustly assembled sequences. In the span of a single decade, the sequence throughput of leading DNA sequencing instruments has increased drastically, and coupled with established and planned large-scale, personalized medicine initiatives to sequence genomes in the thousands and even millions, the development of efficient, scalable and accurate bioinformatics tools for producing high-quality reference draft genomes is timely.With ABySS 1.0, we originally showed that assembling the human genome using short 50 bp sequencing reads was possible by aggregating the half terabyte of compute memory needed over several computers using a standardized message-passing system (MPI). We present here its re-design, which departs from MPI and instead implements algorithms that employ a Bloom filter, a probabilistic data structure, to represent a de Bruijn graph and reduce memory requirements.We present assembly benchmarks of human Genome in a Bottle 250 bp Illumina paired-end and 6 kbp mate-pair libraries from a single individual, yielding a NG50 (NGA50) scaffold contiguity of 3.5 (3.0) Mbp using less than 35 GB of RAM, a modest memory requirement by today’s standard that is often available on a single computer. We also investigate the use of BioNano Genomics and 10x Genomics’ Chromium data to further improve the scaffold contiguity of this assembly to 42 (15) Mbp.


2019 ◽  
Vol 79 (13-14) ◽  
pp. 9387-9401 ◽  
Author(s):  
Chi Tian ◽  
Jinfeng Xia ◽  
Ji Tang ◽  
Hui Yin

Author(s):  
Anoosheh Niavarani-Kheirier ◽  
Masoud Darbandi ◽  
Gerry E. Schneider

The main objective of the current work is to utilize Lattice Boltzmann Method (LBM) for simulating buoyancy-driven flow considering the hybrid thermal lattice Boltzmann equation (HTLBE). After deriving the required formulations, they are validated against a wide range of Rayleigh numbers in buoyancy-driven square cavity problem. The performance of the method is investigated on parallel machines using Message Passing Interface (MPI) library and implementing domain decomposition technique to solve problems with large order of computations. The achieved results show that the code is highly efficient to solve large scale problems with excellent speedup.


Author(s):  
Yu-Cheng Chou ◽  
Harry H. Cheng

Message Passing Interface (MPI) is a standardized library specification designed for message-passing parallel programming on large-scale distributed systems. A number of MPI libraries have been implemented to allow users to develop portable programs using the scientific programming languages, Fortran, C and C++. Ch is an embeddable C/C++ interpreter that provides an interpretive environment for C/C++ based scripts and programs. Combining Ch with any MPI C/C++ library provides the functionality for rapid development of MPI C/C++ programs without compilation. In this article, the method of interfacing Ch scripts with MPI C implementations is introduced by using the MPICH2 C library as an example. The MPICH2-based Ch MPI package provides users with the ability to interpretively run MPI C program based on the MPICH2 C library. Running MPI programs through the MPICH2-based Ch MPI package across heterogeneous platforms consisting of Linux and Windows machines is illustrated. Comparisons for the bandwidth, latency, and parallel computation speedup between C MPI, Ch MPI, and MPI for Python in an Ethernet-based environment comprising identical Linux machines are presented. A Web-based example is given to demonstrate the use of Ch and MPICH2 in C based CGI scripting to facilitate the development of Web-based applications for parallel computing.


Sign in / Sign up

Export Citation Format

Share Document