scholarly journals Smarthoods: Aquaponics Integrated Microgrids

Author(s):  
Florijn de Graaf ◽  
Simon Goddek

AbstractWith the pressure to transition towards a fully renewable energy system increasing, a new type of power system architecture is emerging: the microgrid. A microgrid integrates a multitude of decentralised renewable energy technologies using smart energy management systems, in order to efficiently balance the local production and consumption of renewable energy, resulting in a high degree of flexibility and resilience. Generally, the performance of a microgrid increases with the number of technologies present, although it remains difficult to create a fully autonomous microgrid within economic reason (de Graaf F, New strategies for smart integrated decentralised energy systems, 2018). In order to improve the self-sufficiency and flexibility of these microgrids, this research proposes integrating a neighbourhood microgrid with an urban agriculture facility that houses a decoupled multi-loop aquaponics facility. This new concept is called Smarthood, where all Food–Water–Energy flows are circularly connected. In doing so, the performance of the microgrid greatly improves, due to the high flexibility present within the thermal mass, pumps and lighting systems. As a result, it is possible to achieve 95.38% power and 100% heat self-sufficiency. This result is promising, as it could pave the way towards realising these fully circular, decentralised Food–Water–Energy systems.

2020 ◽  
Vol 10 (2) ◽  
pp. 25
Author(s):  
Omar S. Alzaid ◽  
Basharat Salim ◽  
Jamal Orfi ◽  
Salah Khan ◽  
Hassan Alshehri

Solar and wind energy systems are attractive hybrid renewable energy systems suitable for various applications and most commonly for power generation. Compared to standalone wind and solar devices, hybrid systems have several advantages, including requiring lesser or no storage devices, being more reliable, damping the daily and seasonal variations and ensuring constant energy flows. This work aims to conduct a feasibility study and a performance analysis of a hybrid wind and solar photovoltaic (PV) power system in selected regions in the Kingdom of Saudi Arabia (KSA). A detailed review on the potential of PV, wind energy and hybrid energy systems in KSA, to reason out the potential areas of study, has identified two sites to be selected to carry out the investigation. A small size power system driven by solar and wind energy has been modeled and simulated for a year period in the selected locations. Various configuration schemes of integrated solar and wind with storage devices for such a small capacity system have been proposed and their respective performances have been evaluated. Techno-economic aspects have been included. The simulation results indicated that the developed model shows a promising future of implementing the renewable energy system in the eastern and southern regions of the Kingdom. 


2021 ◽  
Vol 1 (3) ◽  
pp. 1-12
Author(s):  
Sofia Lewis Lopes ◽  
Elizabeth Duarte ◽  
Rita Fragoso

The exponential population growth will put great pressure on natural resources, agriculture, energy systems and waste production. New business models and innovative technological approaches are necessary to tackle these challenges and achieve the energy transition targets set by the European Commission. Renewable energy technologies and processes such as solar photovoltaic, solar thermal and anaerobic co-digestion have become a subject of interest and research as a solution that could be fully implemented in industries and solve several environmental and economic problems. This paper discusses the possibility of integrating and complement these technologies to maximize renewable energy production and circularity. The review was performed with a funnel approach aiming to analyze broad to specific subjects. Beginning with a literature review on the various definitions of circular economy, bioeconomy, and circular bioeconomy, ultimately proposing a single definition according to an industrial and academic scope combination, followed by a systematization and assessment of data and literature regarding energy systems present state and projections. The next phase was to assess data and literature of the fruit and vegetable processing industry from an energy consumption and biowaste production perspective to consequently discussing technologies that could help manage problems identified throughout this review. This paper culminates in propounding an Integrated Renewable Energy System conceptual model that promotes energy and waste circularity, envisioning how industries could be designed or redesigned in the future, coupled with a circular bioeconomy business model.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1103
Author(s):  
Jiajia Li ◽  
Jinfu Liu ◽  
Peigang Yan ◽  
Xingshuo Li ◽  
Guowen Zhou ◽  
...  

An integrated energy system interconnects multiple energies and presents a potential for economics improvement and energy sustainability, which has attracted extensive attention. However, due to the obvious volatility of energy demands, most existing integrated energy systems cannot operate in a totally self-sufficient way but interact with the upper grid frequently. With the increasingly urgent demand for energy saving and emissions reduction, renewable resources have occupied a larger and larger proportion in energy system, and at last they may be dominant in the future. Unlike conventional fossil fuel generation, the renewable resources are less controllable and flexible. To ease the pressure and guarantee the upper grid security, a more independent integrated energy system is required. Driven by that, this paper firstly reviews the optimal strategies considering both independence and benefit from perspectives of individual efforts and union efforts. Firstly, the general optimization process is summarized in terms of energy flows modelling and optimization methods to coordinate supply–demand side and realize benefit maximization. Based on that, handling with uncertainty of high-ratio renewable energy is reviewed from uncertainty modeling methods and multi-stage operation strategy perspectives to make the strategy accurate and reduce the adverse effects on the upper grid. Then, the hybrid timescale characteristics of different energy flows are explored to enhance operation flexibility of integrated energy systems. At last, the coordination among different participants is reviewed to reduce the whole adverse effect as a union. Remarks are conducted in the end of each part and further concluded in the final part. Overall, this study summarizes the research directions in operation optimization of integrated energy systems to cater for a renewable energy dominated scene to inspire the latter research.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4284
Author(s):  
Min-Hwi Kim ◽  
Youngsub An ◽  
Hong-Jin Joo ◽  
Dong-Won Lee ◽  
Jae-Ho Yun

Due to increased grid problems caused by renewable energy systems being used to realize zero energy buildings and communities, the importance of energy sharing and self-sufficiency of renewable energy also increased. In this study, the energy performance of an energy-sharing community was investigated to improve its energy efficiency and renewable energy self-sufficiency. For a case study, a smart village was selected via detailed simulation. In this study, the thermal energy for cooling, heating, and domestic hot water was produced by ground source heat pumps, which were integrated with thermal energy storage (TES) with solar energy systems. We observed that the ST system integrated with TES showed higher self-sufficiency with grid interaction than the PV and PVT systems. This was due to the heat pump system being connected to thermal energy storage, which was operated as an energy storage system. Consequently, we also found that the ST system had a lower operating energy, CO2 emissions, and operating costs compared with the PV and PVT systems.


Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 14
Author(s):  
Ezzeddine Touti ◽  
Hossem Zayed ◽  
Remus Pusca ◽  
Raphael Romary

Renewable energy systems have been extensively developed and they are attractive to become widespread in the future because they can deliver energy at a competitive price and generally do not cause environmental pollution. However, stand-alone energy systems may not be practical for satisfying the electric load demands, especially in places having unsteady wind speeds with high unpredictability. Hybrid energy systems seem to be a more economically feasible alternative to satisfy the energy demands of several isolated clients worldwide. The combination of these systems makes it possible to guarantee the power stability, efficiency, and reliability. The aim of this paper is to present a comprehensive analysis and to propose a technical solution to integrate a self-excited induction generator in a low power multisource system. Therefore, to avoid the voltage collapsing and the machine demagnetization, the various parameters have to be identified. This procedure allows for the limitation of a safe operating area where the best stability of the machine can be obtained. Hence, the load variation interval is determined. An improvement of the induction generator stability will be analyzed. Simulation results will be validated through experimental tests.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1125
Author(s):  
Kody M. Powell ◽  
Kasra Mohammadi

As renewable energy technologies decrease in cost and become more prevalent, there is an increasing trend towards electrification of many energy systems [...]


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2879
Author(s):  
Xinxin Liu ◽  
Nan Li ◽  
Feng Liu ◽  
Hailin Mu ◽  
Longxi Li ◽  
...  

Optimal design of regional integrated energy systems (RIES) offers great potential for better managing energy sources, lower costs and reducing environmental impact. To capture the transition process from fossil fuel to renewable energy, a flexible RIES, including the traditional energy system (TES) based on the coal and biomass based distributed energy system (BDES), was designed to meet a regional multiple energy demand. In this paper, we analyze multiple scenarios based on a new rural community in Dalian (China) to capture the relationship among the energy supply cost, increased share of biomass, system configuration transformation, and renewable subsidy according to regional CO2 emission abatement control targets. A mixed integer linear programming (MILP) model was developed to find the optimal solutions. The results indicated that a 40.58% increase in the share of biomass in the RIES was the most cost-effective way as compared to the separate TES and BDES. Based on the RIES with minimal cost, by setting a CO2 emission reduction control within 40%, the RIES could ensure a competitive total annual cost as compared to the TES. In addition, when the reduction control exceeds 40%, a subsidy of 53.83 to 261.26 RMB/t of biomass would be needed to cover the extra cost to further increase the share of biomass resource and decrease the CO2 emission.


2021 ◽  
Author(s):  
Samuel Robinson ◽  
Alona Armstrong

<p>Energy systems around the world are rapidly transitioning towards decentralised and digitalised systems as countries aim to decarbonise their economies. However, broader environmental effects of the upscaling of these smart local energy systems (SLES) beyond reducing carbon emissions remain unclear. Land-use change associated with increased deployment of renewables, new infrastructures required for energy distribution and storage, and resource extraction for emerging energy technologies may have significant environmental impacts, including consequences for ecosystems within and beyond energy system project localities. This has major implications for biodiversity, natural capital stocks and provision of ecosystem services, the importance of which are increasingly recognised in development policy at local to international scales. This study assessed current understanding of the broader environmental impacts and potential co-benefits of SLES through a global Rapid Evidence Assessment of peer-reviewed academic literature, with a critical evaluation and synthesis of existing knowledge of effects of SLES on biodiversity, natural capital and ecosystem services. There was a striking overall lack of evidence of the environmental impacts of SLES. The vast majority of studies identified considered only energy technology CO<sub>2</sub> emissions through simulation modelling; almost no studies made explicit reference to effects on ecosystems. This highlights an urgent need to improve whole system understanding of environmental impacts of SLES, crucial to avoid unintended ecosystem degradation as a result of climate change mitigation. This will also help to identify potential techno-ecological synergies and opportunities for improvement of degraded ecosystems alongside reaching decarbonisation goals.</p>


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2554 ◽  
Author(s):  
Avri Eitan ◽  
Gillad Rosen ◽  
Lior Herman ◽  
Itay Fishhendler

The adoption of renewable energies contributes to sustainable development worldwide. Entrepreneurs are key agents in facilitating their promotion, as they improve the mix of the means of production and thus transform renewable energy technologies into viable energy systems. Nonetheless, the literature tends to treat entrepreneurs as a homogeneous group, thus preventing comprehensive understanding of their motivations, behaviors, capabilities, and effects. This study addresses this research gap by identifying and categorizing the various characteristics of these entrepreneurs and developing an integrated classification method. Four examples of renewable energy entrepreneurs, in China, Denmark, Germany, and India, are analyzed according to the proposed classification method, while demonstrating their differences. Thus, through proposing a new analytical typology, this study improves our understanding of renewable energy entrepreneurs and their significant role in the promotion of renewable energy worldwide.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6223
Author(s):  
Bin Ye ◽  
Minhua Zhou ◽  
Dan Yan ◽  
Yin Li

The application of renewable energy has become increasingly widespread worldwide because of its advantages of resource abundance and environmental friendliness. However, the deployment of hybrid renewable energy systems (HRESs) varies greatly from city to city due to large differences in economic endurance, social acceptance and renewable energy endowment. Urban policymakers thus face great challenges in promoting local clean renewable energy utilization. To address these issues, this paper proposes a combined multi-objective optimization method, and the specific process of this method is described as follows. The Hybrid Optimization Model for electric energy was first used to examine five different scenarios of renewable energy systems. Then, the Technique for Order Preference by Similarity to an Ideal Solution was applied using eleven comprehensive indicators to determine the best option for the target area using three different weights. To verify the feasibility of this method, Xiongan New District (XND) was selected as an example to illustrate the process of selecting the optimal HRES. The empirical results of simulation tools and multi-objective decision-making show that the Photovoltaic-Diesel-Battery off-grid energy system (option III) and PV-Diesel-Hydrogen-Battery off-grid energy system (option V) are two highly feasible schemes for an HRES in XND. The cost of energy for these two options is 0.203 and 0.209 $/kWh, respectively, and the carbon dioxide emissions are 14,473 t/yr and 345 t/yr, respectively. Our results provide a reference for policymakers in deploying an HRES in the XND area.


Sign in / Sign up

Export Citation Format

Share Document