Climate Change: Land Use and Water Management Practices by Small Holding Farmers in Kayunga District, Uganda

Author(s):  
Alex Ronald Mwangu

2021 ◽  
Author(s):  
Darija Bilandžija ◽  
Marija Galić ◽  
Željka Zgorelec

<p>In order to mitigate climate change and reduce the anthropogenic greenhouse gas (GHG) emissions, the Kyoto protocol has been adopted in 1997 and the Paris Agreement entered into force in 2016. The Paris Agreement have ratified 190 out of 197 Parties of the United Nations Framework Convention on Climate Change (UNFCCC) and Croatia is one of them as well. Each Party has obliged regularly to submit the national inventory report (NIR) providing the information on the national anthropogenic GHG emissions by sources and removals by sinks to the UNFCCC. Reporting under the NIR is divided into six categories / sectors, and one of them is land use, land use change and forestry (LULUCF) sector, where an issue of uncertainty estimates on carbon emissions and removals occurs. As soil respiration represents the second-largest terrestrial carbon flux, the national studies on soil respiration can reduce the uncertainty and improve the estimation of country-level carbon fluxes. Due to the omission of national data, the members of the University of Zagreb Faculty of Agriculture, Department of General Agronomy have started to study soil respiration rates in 2012, and since then many different studies on soil respiration under different agricultural land uses (i.e. annual crops, energy crop and vineyard), management practices (i.e. tillage and fertilization) and climate conditions (i.e. continental and mediterranean) in Croatia have been conducted. The obtained site specific results on field measurements of soil carbon dioxide concentrations by <em>in situ</em> closed static chamber method will be presented in this paper.</p>



2013 ◽  
Vol 35 (3) ◽  
pp. 315 ◽  
Author(s):  
S. J. Mu ◽  
Y. Z. Chen ◽  
J. L. Li ◽  
W. M. Ju ◽  
I. O. A. Odeh ◽  
...  

China’s grassland has been undergoing rapid changes in the recent past owing to increased climate variability and a shift in grassland management strategy driven by a series of ecological restoration projects. This study investigated the spatio-temporal dynamics of Inner Mongolia grassland, the main grassland region in China and part of the Eurasia Steppe, to detect the interactive nature of climate, ecosystems and society. Land-use and landscape patterns for the period from 1985 to 2009 were analysed based on TM- and MODIS-derived land-use data. Net Primary Productivity (NPP) estimated by using the Carnegie-Ames-Stanford Approach model was used to assess the growth status of grassland. Furthermore, the factors related to the dynamics of grassland were analysed from the perspectives of two driving factors, climate change and human activities. The results indicated that higher temperatures and lower precipitation may generally have contributed to grassland desertification, particularly in arid regions. During the period from 1985 to 2000, a higher human population and an increase in livestock numbers were the major driving forces responsible for the consistent decrease in NPP and a relatively fragmented landscape. From 2000 to 2009, the implementation of effective ecological restoration projects has arrested the grassland deterioration in some ecologically fragile regions. However, a rapid growth of livestock numbers has sparked new degradation onnon-degraded or lightly degraded grassland, which was initially neglected by these projects. In spite of some achievement in grassland restoration, China should take further steps to develop sustainable management practices for climate adaptation and economic development to bring lasting benefits.



2020 ◽  
Vol 13 (10) ◽  
pp. 4713-4747
Author(s):  
Tokuta Yokohata ◽  
Tsuguki Kinoshita ◽  
Gen Sakurai ◽  
Yadu Pokhrel ◽  
Akihiko Ito ◽  
...  

Abstract. Future changes in the climate system could have significant impacts on the natural environment and human activities, which in turn affect changes in the climate system. In the interaction between natural and human systems under climate change conditions, land use is one of the elements that play an essential role. On the one hand, future climate change will affect the availability of water and food, which may impact land-use change. On the other hand, human-induced land-use change can affect the climate system through biogeophysical and biogeochemical effects. To investigate these interrelationships, we developed MIROC-INTEG-LAND (MIROC INTEGrated LAND surface model version 1), an integrated model that combines the land surface component of global climate model MIROC (Model for Interdisciplinary Research on Climate) with water resources, crop production, land ecosystem, and land-use models. The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balance, human water management, and crop growth incorporates a land use decision-making model based on economic activities. In MIROC-INTEG-LAND, spatially detailed information regarding water resources and crop yields is reflected in the prediction of future land-use change, which cannot be considered in the conventional integrated assessment models. In this paper, we introduce the details and interconnections of the submodels of MIROC-INTEG-LAND, compare historical simulations with observations, and identify various interactions between the submodels. By evaluating the historical simulation, we have confirmed that the model reproduces the observed states well. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand. The newly developed MIROC-INTEG-LAND could be combined with atmospheric and ocean models to develop an integrated earth system model to simulate the interactions among coupled natural–human earth system components.



2021 ◽  
Author(s):  
Mariya Gorlova

Land use planning recognizes the need for incorporating climate change adaptation strategies to address natural disaster reoccurrence. In 2013, the Rockefeller Foundation developed the 100 Resilient Cities (100RC) model to support initiatives related to climate change and resilience. Globally through the model, cities appointed Chief Resilience Officers (CROs) to develop a vision, lead implementation and establish long-term city resilience. Three major cities in Canada (Toronto, Vancouver and Montreal) are now RC100 cities and subsequently introduced the positions of CROs. The purpose of this research paper is to highlight the current state of interventions in Toronto water management strategies to emphasize the role land use planning can have in Resilience Strategy development. Recommendations will be made based on literature review, policies and best practices scan, as well as stakeholders’ interview analysis. Safety and wellbeing of citizenry are at the forefront of the urban agenda, requiring utmost attention to climate change and precautionary measures against natural disaster. Key words: land use planning, urban water management, Canada, resilient cities



2017 ◽  
Author(s):  
Tadesse Alemayehu ◽  
Ann van Griensven ◽  
Willy Bauwens

Abstract. The Soil and Water Assessment Tool (SWAT) is a globally applied river basin eco-hydrological simulator in a wide spectrum of studies, ranging from land use change and climate change impacts studies to research for the development of best water management practices. However, SWAT has limitations in simulating the seasonal growth cycles for trees and perennial vegetation in tropics, where the major plant growth controlling factor is the rainfall (via soil moisture) rather than temperature. Our goal is to improve the vegetation growth module of the SWAT model for simulating the vegetation parameters such as the leaf area index (LAI) for tropics. Therefore, we present a modified SWAT version for the tropics (SWAT-T) that uses of a simple but robust soil moisture index (SMI) – a quotient of the rainfall (P) and reference evapotranspiration (PET) – to initiate a new growing season after a defined dry season. Our results for the Mara Basin (Kenya/Tanzania) show that the SWAT-T simulated LAI corresponds well with the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI for evergreen forest, savanna grassland and shrubs, indicating that the SMI is a reliable proxy to dynamically initiate a new growing cycle. The water balance components (evapotranspiration and flow) simulated by the SWAT-T exhibit a good agreement with remote sensing-based evapotranspiration (RS-ET) and observed flow. The SWAT-T simulator with the proposed improved vegetation growth module for tropical ecosystem could be a robust tool for several applications including land use and climate change impact studies.



2020 ◽  
Author(s):  
Geeta G. Persad ◽  
Daniel L. Swain ◽  
Claire Kouba ◽  
J. Pablo Ortiz-Partida

Abstract Shifts away from the historical hydroclimate in populated regions can have dire consequences for water management. Regions like the state of California—where highly engineered, geographically interconnected, and inflexible water management systems are predicated on particular spatiotemporal patterns of water availability—are particularly vulnerable to hydroclimate shifts. However, much of the analysis of hydroclimate sensitivity to anthropogenic climate change has focused on gross metrics like annual mean precipitation, which is highly uncertain at the regional scale. This perceived uncertainty has deterred adaptation investments and quantitative integration of climate projection data into regional water management. Here, we assess projected future shifts in the state of California in a range of hydroclimate metrics critical to water management, using data from 10 statistically downscaled global climate model and two emissions scenarios currently used by the state. We find substantial inter-model agreement under both emissions scenarios—and > 80% inter-model agreement under the more severe climate change scenario—across metrics that collectively point toward an increasingly volatile, temporally concentrated, and extreme precipitation future for the state. We show, via hydrologic and operations modeling, that accounting for shifts in these more nuanced metrics reduces the projected reliability and sustainability of current water management practices to a greater degree than would be inferred from changes in total annual precipitation alone. These results highlight both the viability and critical importance of incorporating climate change projections quantitatively into water management decisions in California and other regions vulnerable to hydroclimate shifts, and underscore the need to develop integrated climate-hydrologic-operations models and decision-making protocols capable of accounting for all projected hydroclimate shifts.



Sign in / Sign up

Export Citation Format

Share Document