Superconducting YBa2Cu3O7−δ Nanocomposite Films Using Preformed ZrO2 Nanocrystals via Chemical Solution Deposition

2019 ◽  
pp. 133-167
Author(s):  
H. Rijckaert ◽  
I. Van Driessche
RSC Advances ◽  
2015 ◽  
Vol 5 (94) ◽  
pp. 76783-76787 ◽  
Author(s):  
H. L. Wang ◽  
X. K. Ning ◽  
Z. J. Wang

Au–LaNiO3 (Au–LNO) nanocomposite films with 3.84 at% Au were firstly fabricated by one-step chemical solution deposition (CSD), and their electrical properties were investigated.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 21 ◽  
Author(s):  
Pablo Cayado ◽  
Hannes Rijckaert ◽  
Manuela Erbe ◽  
Marco Langer ◽  
Alexandra Jung ◽  
...  

Chemical solution deposition (CSD) was used to grow Y1−xGdxBa2Cu3O7−δ-BaHfO3 (YGBCO-BHO) nanocomposite films containing 12 mol% BHO nanoparticles and various amounts of Gd, x, on two kinds of buffered metallic tapes: Ni5W and IBAD. The influence of the rare-earth stoichiometry on structure, morphology and superconducting properties of these films was studied. The growth process was carefully studied in order to find the most appropriate growth conditions for each composition and substrate. This led to a clear improvement in film quality, probably due to the reduction of BaCeO3 formation. In general, the superconducting properties of the films on Ni5W are significantly better. For x > 0.5, epitaxial ~270 nm thick YGBCO-BHO films with Tc > 93 K and self-field Jc at 77 K ~2 MA/cm² were obtained on Ni5W. These results highlight the potential of this approach for the fabrication of high-quality coated conductors.


2018 ◽  
Vol 765 ◽  
pp. 30-33
Author(s):  
Vinod Kumar ◽  
Mintu Tyagi

Magnetoelectric (1−x) BNT−xCFO nanoparticulate thin films with (x= 0, 0.1, 0.2, 0.3) were fabricated by a chemical solution deposition technique. The X-ray diffraction shows that no other secondary phases are observed. Transmission electron microscope (TEM) revels that CFO nanoparticles were well distributed in matrix of BNT. The nanocomposite films exhibit both good magnetic and ferroelectric properties at room temperature (R-T), as well as enhanced magnetoelectric coupling. The composite withx= 0.2, showed the large value ofMEvoltage coefficient (αE) ~ 163 mV/cmOe. TheseMEcomposites provide a great opportunity as potential lead free systems forMEdevices.


RSC Advances ◽  
2018 ◽  
Vol 8 (74) ◽  
pp. 42398-42404 ◽  
Author(s):  
Pablo Cayado ◽  
Manuela Erbe ◽  
Sandra Kauffmann-Weiss ◽  
Alexandra Jung ◽  
Jens Hänisch ◽  
...  

Superconducting Y1–xGdxBa2Cu3O7–δ–BaHfO3 nanocomposite films were prepared by chemical solution deposition on SrTiO3 substrates in order to study the influence of the rare earth stoichiometry on their structure, morphology and electrical properties.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 307
Author(s):  
Diana Griesiute ◽  
Dovydas Karoblis ◽  
Lina Mikoliunaite ◽  
Aleksej Zarkov ◽  
Andrei N. Salak ◽  
...  

In the present work, polycrystalline Bi0.67La0.33Fe0.5Sc0.5O3 thin films were synthesized using a simple and cost-effective chemical solution deposition process employing the spin coating technique. In order to check the feasibility of the fabrication of thin films on various types of substrates, the films were deposited on Pt-coated silicon, silicon, sapphire, corundum, fused silica and glass. Based on the results of thermogravimetric analysis of precursor and thermal stability study, it was determined that the optimal annealing temperature for the formation of perovskite structure is 600 °C. It was observed that the relative intensity of the pseudocubic peaks (001)p and (011)p in the XRD patterns is influenced by the nature of substrates, suggesting that the formed crystallites have some preferred orientation. Roughness of the films was determined to be dependent on the nature of the substrate.


Author(s):  
Sucheta Sengupta ◽  
Rinki Aggarwal ◽  
Yuval Golan

This review article gives an overview of different complexing agents used during chemical deposition of metal chalcogenide thin films and their role in controlling the resultant morphology by effective complexation of the metal ion.


Sign in / Sign up

Export Citation Format

Share Document