Design and Performance Analysis of Docker-Based Smart Manufacturing Platform Based on Deep Learning Model

Author(s):  
Soonsung Hwang ◽  
Jaehyoung Lee ◽  
Dongyeon Kim ◽  
Jongpil Jeong
2019 ◽  
Author(s):  
Xinyang Feng ◽  
Frank A. Provenzano ◽  
Scott A. Small ◽  

ABSTRACTDeep learning applied to MRI for Alzheimer’s classification is hypothesized to improve if the deep learning model implicates disease’s pathophysiology. The challenge in testing this hypothesis is that large-scale data are required to train this type of model. Here, we overcome this challenge by using a novel data augmentation strategy and show that our MRI-based deep learning model classifies Alzheimer’s dementia with high accuracy. Moreover, a class activation map was found dominated by signal from the hippocampal formation, a site where Alzheimer’s pathophysiology begins. Next, we tested the model’s performance in prodromal Alzheimer’s when patients present with mild cognitive impairment (MCI). We retroactively dichotomized a large cohort of MCI patients who were followed for up to 10 years into those with and without prodromal Alzheimer’s at baseline and used the dementia-derived model to generate individual ‘deep learning MRI’ scores. We compared the two groups on these scores, and on other biomarkers of amyloid pathology, tau pathology, and neurodegeneration. The deep learning MRI scores outperformed nearly all other biomarkers, including—unexpectedly—biomarkers of amyloid or tau pathology, in classifying prodromal disease and in predicting clinical progression. Providing a mechanistic explanation, the deep learning MRI scores were found to be linked to regional tau pathology, through investigations using cross-sectional, longitudinal, premortem and postmortem data. Our findings validate that a disease’s known pathophysiology can improve the design and performance of deep learning models. Moreover, by showing that deep learning can extract useful biomarker information from conventional MRIs, the advantages of this model extend practically, potentially reducing patient burden, risk, and cost.


10.2196/15931 ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. e15931 ◽  
Author(s):  
Chin-Sheng Lin ◽  
Chin Lin ◽  
Wen-Hui Fang ◽  
Chia-Jung Hsu ◽  
Sy-Jou Chen ◽  
...  

Background The detection of dyskalemias—hypokalemia and hyperkalemia—currently depends on laboratory tests. Since cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias before laboratory results. Objective Our study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations and to evaluate the logic and performance of this model. Methods Spanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K+) concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional neural network that estimates serum K+ concentration. Six clinicians—three emergency physicians and three cardiologists—participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate the performance of ECG12Net with that of these physicians. Results In a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%, respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively. Conclusions A deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and thereby potentially reduce cardiac events.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


Sign in / Sign up

Export Citation Format

Share Document